
JAMZ Climate Sensor: Prototype III

Deliverable H

GNG 1103

March 28th, 2021

Ogechi Ahunanya, Olivia Carnegie, Michaela Jones, Zach Léger, Julio Midence

Table of Contents:

Table of Contents: 2

Introduction 3

Physical Prototype & Code 3
Physical Prototype III 3
Current Functioning and Tested Code 4

CAD Prototype 8

Test Plan III 10

Client Feedback 13

Conclusion 14

Wrike Planning for Next Deliverable 14

Introduction
In this deliverable, we made what was supposed to be our last prototype, but based on our testing
and some unfortunate errors we will need to make another one before design day. Over the past
two weeks, our team has upgraded the code for the sensor and the sensor casing. For the code,
we added time stamps that can range from seconds to hours, since the drone will be flying in
rural areas it is possible that trips could last around an hour. For the physical prototype, we made
a casing for our arduino, as well as added some improvements to our sensor casing. In this
deliverable, we will show everything that we worked on and provide explanations as to why we
need to make more modifications to our prototype before design day.

Physical Prototype & Code

Physical Prototype III

For our third prototype, we added some modifications to our sensor casing and we made a casing
for the arduino. In our last deliverable, we made our first sensor casing prototype by 3D printing.
Unfortunately, the holes for the pegs were too small for the pegs themselves and the prototype
was not very stable. In this deliverable, we made sure to fix those issues by making the pegs
larger and stronger and making the holes for the pegs the appropriate size. As shown in Figure 1,
the new sensor casing is very stable and the top casing fits perfectly into the bottom casing. The
issue with this prototype is that it was a bit too large and the holes for the screws were way too
big.

Figure 1. Picture of physical prototype III (first attempt)

In our second attempt, we fixed the issue of the hole size for the screws and we made the bottom
casing less thick than our first attempt. The issue with this prototype is that when we made this
prototype we accidentally made the peg holes too big, so the top casing does not stay in the peg

holes when flipped upside down. Also, when printing the casing the hot plate of the printer was
not hot enough making our second attempt a little warped.

Figure 2. Picture of physical prototype III (second attempt)

As shown in figures 1 and 2, we can see the arduino casing. The case for the arduino has the
perfect size however it is not very compact resistant nor water resistant (more information in the
test plan section). All in all, we still have some things to work on, such as waterproofing the
casing for the sensor and the arduino, fixing the fitting of the top and bottom cases for the sensor
and improving the compact resistance of the arduino case. When making our final prototype
before design day we will also make sure the holes will fit M3 screws since those are the screws
that JAMZ will be using.

Current Functioning and Tested Code

The code has been tested, and it has passed all the required obstacles. The code has changed and
gone through many different phases. During the first prototype, the values being printed were not
realistic. The temperature was too high and the humidity was too low. After some debugging, the
team realized the climate sensor outputs the humidity value first and then the temperature. When
the values were being passed onto the created variables, the numbers were swapped. The first
prototype gave the team a good insight on how the climate sensor needed to be programmed. The
second prototype gave the team the insight on how to properly incorporate a warning system if
any undesired value was being collected. The final prototype successfully prints accurate
temperature and humidity values with time stamps and a warning system. The current
functioning and tested code is given below.

/*
* Make sure to include the AHT Library

*/
#include <Adafruit_AHTX0.h>

/*
* Initialize the AHT library with the variables used for the Time Stamp
*/
Adafruit_AHTX0 AHT;
float seconds = 0.0;
int minutes = 0;
int hours = 0;

/*
* Start with a Baud rate of 115200
*/
void setup()
{
Serial.begin(115200);
AHT.begin();
/*
* Create a loop iterating multiple times to have a line for the start of the table
*/
int i = 0;
for (i=0; i<60; i++)
{
Serial.print("-");

}

/*
* Create the column headers for the table
*/
char firstColumn[] = "Time Stamp";
char secondColumn[] = "Temperature";
char thirdColumn[] = "Humidity";
char fourthColumn[] = "Warning";
Serial.print("\n|");
Serial.print(firstColumn);
Serial.print("\t|");
Serial.print(secondColumn);
Serial.print("\t|");

Serial.print(thirdColumn);
Serial.print("\t|");
Serial.println(fourthColumn);

}

void loop()
{

float frequency = 0.5;
float timeStamp;
/*
* Have time stamps showcase minutes and hours.
*/

Serial.print(hours);
Serial.print(":");
Serial.print(minutes);
Serial.print(":");

/*
* Have the variable timeStamp increase by 0.5 for each iteration
*/

timeStamp = seconds + frequency;
seconds = timeStamp;
Serial.print(timeStamp);
Serial.print("s");

/*
* Once the seconds reaches 60, add one minute to the minute variable. Repeat for the hours

variable.
*/
if (seconds == 60.0)
{
seconds = 0.0;
minutes = ++minutes;

}

if (minutes == 60)
{
minutes = 0;
hours = ++hours;

}

/*
* This comment is taken from learn.adafruit.com:
* sensors_event_t - This type is used to encapsulate a specific sensor reading, called an 'event',
* and contains data from the sensor from a specific moment in time.
* Create a temperature and humidity value
*/
sensors_event_t humValue, tempValue;
/*
* getEvent: Gets the temperature as a standard sensor event
*/
AHT.getEvent(&humValue, &tempValue);
/*
* Print the temperature and humidity values in one row
* Wait 500 milliseconds or the desired amount and print the next set of values in the next row
*/
Serial.print("\t ");
Serial.print(tempValue.temperature);
Serial.print("°C\t ");
Serial.print(humValue.relative_humidity);
Serial.print("%\t ");
/*
* Set up conditions to showcase a warning statement if temperature and or humidity values are

out of range
*/
if (tempValue.temperature > 27.5 && humValue.relative_humidity > 60)
{
Serial.println("WARNING, TEMPERATURE AND HUMIDITY TOO HIGH");

}
else if (tempValue.temperature < 22.5 && humValue.relative_humidity < 45)
{
Serial.println("WARNING, TEMPERATURE AND HUMIDITY TOO LOW");

}
else if (tempValue.temperature > 27.5 && humValue.relative_humidity < 45)
{

Serial.println("WARNING, TEMPERATURE IS TOO HIGH AND HUMIDITY IS TOO
LOW");
}
else if (tempValue.temperature < 22.5 && humValue.relative_humidity > 60)
{
Serial.println("WARNING, TEMPERATURE IS TOO LOW AND HUMIDITY IS TOO

HIGH");
}
else if (tempValue.temperature > 27.5)
{
Serial.println("WARNING, TEMPERATURE IS TOO HIGH");

}
else if (tempValue.temperature < 22.5)
{
Serial.println("WARNING, TEMPERATURE IS TOO LOW");

}
else if (humValue.relative_humidity > 60)
{
Serial.println("WARNING, HUMIDITY IS TOO HIGH");

}
else if (humValue.relative_humidity < 45)
{
Serial.println("WARNING, HUMIDITY IS TOO LOW");

}
else
{
Serial.println();

}

delay(500);
}

CAD Prototype
During the past two weeks we had the opportunity to make lots of changes to our CAD. We also
had the opportunity to print these designs. Through much trial and error we were finally able to
design and print an effective sensor case. The biggest concern with this third prototype is that the
core of the case happens to be way too large and dense. By the next deliverable we plan to print a
new smaller case and test it. Not only do we want to reduce materials in general, we also want to
ensure our total system meets JAMZ’s weight/mass needs.

Figure 3. Sensor Casing on Drone Lid

Figure 4. Sensor Casing on Drone Lid

Figures 3 and 4 demonstrate the placement of the Sensor and Casing on the interior of the drone
lid. The Sensor and casing will be placed and screwed to the center of the lid and inside the box,
but the sensor will not touch the box directly in order to provide optimal results. The CAD
design of the sensor casing on the drone lid was improved by making the lid a replica of the one
JAMZ has designed, making it easier for the client to identify the placement of our sensor on
their drone.

Figure 5. Sensor Casing

Figure 4 demonstrates the design of our sensor casing created to protect the climate sensor from
damages. The casing was improved from the last sensor casing design to have a thicker handle so
it is easier for the user to remove the lid of the climate sensor when needed. We noticed in the
previous prototype that the pegs were too thin which made them susceptible to breakage. In this
prototype, we made the pegs thicker so they are significantly less prone to easy breakage.
Furthermore, we included a larger hole for the sensor wiring to go through for more efficient
connection. To improve this prototype, we are looking to use M3 screws since those are the
screws JAMZ is using.

In the last deliverable we decided to print an arduino case to include in our physical prototype.
During this past week we took the time to perform several drop tests to check the effectiveness of
the arduino casing. Unfortunately, at relatively low heights the top of the casing was coming off.
From here we decided we would have to alter the way the bottom and the top of the casing will
attach.

Test Plan III
Table 1: Climate Sensor Test Plan

Test ID Test
Objective

(Why)

Description
of

Prototype
used and of
Basic Test
Method
(What)

Description
of Results

to be
Recorded
and how

these results
will be used

(How)

Estimated
Test

duration
and planned

start date
(When)

Analysis

1
(Code)

To ensure
proper and
accurate
function
of code
with
sensor.

Numerical
and
physical
prototype.
Test speed
of data and
response
time
reliability

Plug in
sensor and
change the
temperature
and
humidity of
the
surrounding
environment
$0 (use
materials we
already
have)

New code
already
tested

Prototype I and II
gave the team all
the knowledge
needed to fully
understand how to
program the
AHT20. Accurate
temperature and
humidity values
were being printed
with a warning
system in place.
The next big step
was adding a
timestamp. After
some testing, a
timestamp ranging
from seconds to
hours was
implemented
successfully.

2
(Sensor

functionality
within case)

To ensure
that the
sensor will
work
properly
while
within the
protective
casing.

Numerical
and
physical
prototype.
Test the
abilities and
accuracy of
the sensor
while it is in
the
protective
casing.

Plug in
sensor while
it is in the
protective
casing and
change the
temperature
and
humidity of
the
surrounding
environment

Test this
while testing
the newest
version of
the code
(ASAP).

The sensor works
just as well with the
case on as it is
without. In the
same environment
tested just minutes
apart, the same
temperature and
humidity values
were obtained.

3
(Weather
proofing)

To ensure
no
weather
elements
can enter
the box at
any
connectio
n points.

Physical
prototype.
Test the
ability to
withstand
different
weather,
such as rain,
from
entering the

Spray water
from a bottle
onto the
prototype to
see if any
water enters.
For the
prototype,
use rubber
blades to

Test as soon
as all
materials are
purchased
and available
for use.

No water is able to
penetrate into the
box, however, the
waterproofing for
the actual sensor
and the Arduino
will need more
work. Currently, all
solutions we have
work theoretically,

delivery
box or the
drone.

cover any
openings
and surround
any
components
within those
openings
(other
materials
might need
to be used
for sooner
testing).

but the materials
will need to be
purchased in order
to understand what
the best approach to
the situation will
be.

4
(Sensor

protection)

To ensure
durability
and
protection
to the
sensor.

Physical
prototype.
Test the
strength of
the casing.
Test how
casing
reacts under
different
environmen
ts with and
without the
sensor
inside.

Perform a
drop test
from varying
heights both
with and
without the
sensor in the
protective
casing.
Perform this
test multiple
times.

Already
tested.

The case was able
to withstand the
drop tests with the
exception of the top
detaching on
impact. Moving
forward, a redesign
of the pegs holding
in place will be
implemented in
order to fix this
problem.

5
(Sensor

Attachment)

To ensure
the sensor
does not
disconnect
during
delivery.

Physical
prototype.
Test the
strength and
fitting of the
attachment
style under
different
environmen
ts.

Attach
sensor
casing to the
delivery like
box and test
its strength
by shaking
to observe
how it holds
on to the lid.

Proper
testing will
be held as
soon as the
final case is
printed.
Prototype
testing will
be held as
soon as the
proper
screws have
been
purchased
and are
available for
use.

Using the proper
screws in order to
attach the sensor
casing to the lid of
the delivery box
will ensure no
separation between
them will occur.
The screws hold
everything together
very nicely.

6
(Wire

connection)

To ensure
nothing
will come
loose or
disconnect
during a
delivery.

Physical
prototype.
Test the
physical
connection
of the wires
with the
updated
attachment
system.
Test for any
kind of
flight path
and
disruptions
that may
occur.

Plug wires
into all other
necessary
components
using new
additions
and
move/shake
the
prototype as
if to
simulate a
rough flight.

Test as soon
as sensor
attachment
has been
tested.

With the addition of
the casing for both
the sensor and the
Arduino, The wire
connection is
proving to be quite
strong. To
guarantee the
connection of the
wires, soldering
them in place
would be the next
step.

7
(Arduino

protection)

To ensure
durability
and
protection
to the
Arduino
Uno.

Physical
prototype.
Test the
strength of
the casing.
Test how
casing
reacts under
different
environmen
ts with and
without the
Arduino
inside.

Perform a
drop test
from varying
heights both
with and
without the
Arduino
Uno in the
protective
casing.
Perform this
test multiple
times.

Already
tested.

The case was able
to withstand the
drop tests with the
exception of the lid
coming off on
impact. Moving
forward, a secure
attachment of the
base and top of the
case will be
implemented in the
design.

Client Feedback
Looking back on the past input we have received from the clients, we have been able to make
improvements to each of our prototypes. For this past prototype we were able to reach out to
JAMZ directly and gain their input on our last design. We had many questions to ask the client in
order to provide them with the best design possible. Once these questions were answered, we
were then able to improve on all aspects of our system. There is still more that can be improved
upon, but this design satisfies all and even surpasses some of the expectations set out by JAMZ.

Conclusion
In conclusion, our third prototype did not end up being our final prototype. Although many
improvements were done on our casings, our tests revealed that we still had adjustments to make.
The first one being, reducing the size of our sensor casing and the second one being, altering our
arduino casing. Code wise our team has many positive additions, including adding time stamps.
For the next deliverable and design day with minor adjustments we are confident that our testing
will be complete and our prototype will be finalized.

Wrike Planning for Next Deliverable

Figure 6. Screenshot of gantt chart for the upcoming deliverable

For the next deliverable, our team needs to prepare a final presentation of our design process for
the climate sensor add-on. For the preparation of our presentation, there will be no dependencies
because everyone is preparing their own section, which is independent of the other sections. To
start the presentation, Julio will prepare and present the introduction and the coding sections of
our project. Julio was chosen to work on these sections due to his high energy when presenting
(very important for the introduction) and his strong knowledge of the project and code.
Following Julio, Ogechi will prepare and present the client needs that we have gathered
throughout the emphasizing stage of our project as well as the problem statement that our team
has defined. Ogechi was chosen for this task because they have a very strong understanding of
the client's needs and strong verbal communication skills which is crucial for the explanation of
the problem statement (viewers of the presentation must fully understand what we set out to
accomplish with our add-on). Next, Michaela will prepare and present the design criteria and

benchmarking sections of the presentation. Michaela was chosen to work on these sections
because she was responsible for benchmarking and came up with our design criteria in earlier
deliverables, making her the ideal candidate to prepare these sections of the presentation.
Moving on, Olivia was chosen to present and prepare the conceptual design, planning and cost
sections of our presentation. Olivia was chosen to work on these sections because she has a
strong understanding of all the conceptual designs that our team has come up with (including the
ones that she came up with). Also, she was responsible for the cost analysis in an earlier
deliverable, so she has a strong knowledge of the costs of our add-on. Olivia was not responsible
for planning the team’s tasks throughout the semester, however every team member understands
and knows the planning system very well, so she is able to present that section. Lastly, Zach was
chosen to prepare and present the physical prototyping section of the presentation. Zach was
chosen for this task due to his heavy involvement of the fabrication of all the physical
components. In conclusion, the tasks assigned for this deliverable were carefully planned out so
that everyone was able to contribute equally as well as utilize their strengths, in order to ensure
success.

