

University of Ottawa

GNG 1103: Engineering Design Project

Deliverable G: Prototype II, and

Customer Feedback

Group Members:

Ali Gohar (0300126709)

Aidan Charette (300305703)

Gilles Tang (300245093)

Benjamin Zinck (300298971)

James Sutton (300293029)

Evan Aguiar-Winter (300227942)

October 23, 2022

Introduction
Updated Client Meeting Feedback
Objective
Specific demands
Stopping criteria5
Prototype II
1.1 Relocation of Sensor Window5
1.2 Waterproofing of Pipe5
2.2 Updated CAD Files for Sensor and Arduino Housing6
3.1 Mathematical Computation8
3.2 Mathematical Proof of Computation Using Water8
4.1 Ultrasonic Reading Using Arduino and Ultrasonic Sensor9
Prototype III Test Plan9
Target Specifications
Issues with the error reading:
Issues with the board design and the electrical designs:11
Issues with unprecise readings:11
Conclusion

Introduction

In the last deliverable, we constructed our first prototype, focusing on more physical aspects of the design such as the fluid pipe, and CAD modeling for the housing box and clamp. In this deliverable, we are aiming to refine aspects from our last deliverable, as well as producing readings from our sensor. The goals for this deliverable are to: relocate the sensor window in the tube, test for waterproof capabilities and cleanability, 3D print the sensor housings and clamp, connect the Arduino and sensors, and finally conduct tests to produce an ultrasonic reading through the tube and fluid.

Task	Owner	Duration	Due Date
Prototype 1	Group	7 Days	November 6th
Prototype 2	Group	7 Days	November 13th
Prototype 3	Group	7 Days	November 27th
Final Prototype	Group	7 Days	November 30th
User manual	Group	2 Days	December 7th
Design Day	Group	1 Day	December 1st

Updated Project Plan

Updated Client Meeting Feedback

During client meeting III, group 18 presented our first prototype, as well as inquired about limitations regarding the composition of the fluid traveling through the tube, and the cleanability of the tube. Shane from Beond the Pale explained that the composition of the wort passing through the tube would not compromise or interfere with the reading, nor would the buildup inhibit the functionality of the tube. Our physical design was well received by the client. He enjoyed the modular nature of the design and cleaning. From client meeting III, group 18 concluded that we would need to relocate the transmission window for prototype III, in addition to designing the clamp housing to be removable.

Prototype II Test Plan

Objective

The objective of prototype II is to refine and complete the physical construction of the prototype involving the tube, clamp and housing. We are also aiming to finalize the code and achieve sensor readings and computation of specific gravity.

Test ID	Test Objective (Why)	Description of Prototype used and of Basic Test Method (What)	Description of Results to be Recorded and how these results will be used (How)	Estimated Test duration and planned start date (When)
1	Test waterproofing of the pipe and window. To ensure security of fluid and electronics.	The tube was capped off on both ends and filled with water.	The tube will be observed to note any leakage of fluid. Observations will be documented through photos and notes.	November 10 th 10 minutes
2	Arduino and sensors housing, to better protect the internal workings of the system.	Further detail and development on CAD case. (Comprehensive)	Fully complete CAD design must be presented and ready for material consideration and implementation	November 9 th (Couple hours)
3	To more accurately and consistently ensure the data recovery for the customer	Test to see how long code takes to respond and process (analytical)	Measure the amount of time it takes to repeat measurements. Ensure no interference or difficulties by running test runs.	November 9 th (Couple of Hours)
4	To more accurately and consistently gain results from the ultrasound device.	The Updating of the code for sound travel speed/test it. (analytical)	We will measure the speed of sound response, and ensure it is accurate to what the code says it is. By comparing we can tell if its working properly	November 9 th (Couple of hours)

Specific demands

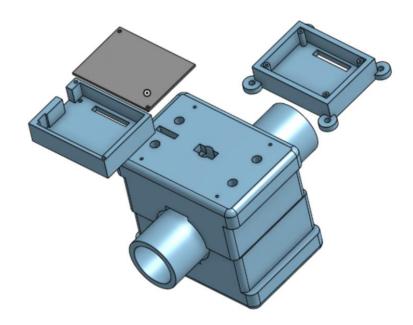
- 1. The Location of the Ultrasonic Window has been moved to the center of the pipe, allowing for room to clamp and fit the sensor housing overtop.
- 2. The ultrasonic device must get a reading that is accurate to 2 or 3 decimal places (which means it needs to be able to tell difference between water and thicker liquid) because the speed might not have an observable difference if the accuracy is deficient.
- 3. The whole test project can be covered with waterproof material, but it must be 100% waterproof and it cannot affect the spread of the ultrasonic wave.
- 4. Make sure the pipe's shape creates as little echo as possible, if the echo is affecting the receiver's reading, then the outcome will create a considerable number of errors.
- 5. The parts of the prototype II must be able to easily be removed, the box will need to detach from the tube in order to perform modifications or maintenance on the project.
- 6. The test readings have been achieved and a reading is produced
- 7. The mathematical equations to determine specific gravity have been completed and produce a value for specific gravity.

Stopping criteria

Specific demands	A reading has been achieved	Water has inhibited the function of the pipe	Minimum of three tests	Clamp or housings fail	3D Prints fail
Points (1-5)	3	5	5	4	2

Prototype II

1.1 Relocation of Sensor Window



The sensor window had been re-located to the middle of the pipe to allow for the housing to be mounted to the pipe. The total length of the pipe was also decreased to minimize unused space in the Beond the Pale production facility.

1.2 Waterproofing of Pipe

As pictured the pipe was tested by capping off ends and observed for water leakage. No water leakage was observed; therefore this criterion was met.

2.2 Updated CAD Files for Sensor and Arduino Housing

Figure 1.0 : CAD model top right view

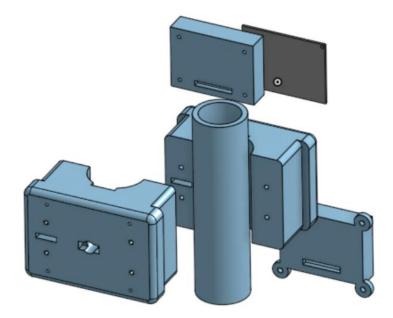


Figure 1.1: CAD model bottom right view

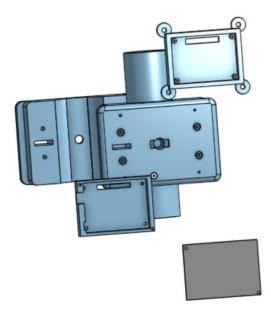


Figure 1.2: CAD model top view

The updated CAD files feature a more refined design, focusing on the routing of wires, in addition to the ability to completely remove the housing from the pipe, as well as updated design for

sensors and holes for screws and bolts. The 3D printing was not completed in time for the delivery; therefore, this criterion remains inconclusive. Due to this setback, we adapted to attempt readings without hardwired components.

3.1 Mathematical Computation

............. Mathematical Computation 9 (C will be received from sensor.) The equation for speed of sound in water: C=(K/Q)" Re-arranging we solve for density, rether than D. = Now, since density for where at standard 10°C Knowledge. We plug in our newly found density 57 Specific gravity = Drinid If the need arrises, Bulk modulus Elasticity (K), has the equation: $K: - V \left(\frac{\Delta P}{\Delta V} \right)$ K= Bulk modulus

Above, the mathematical computation for the specific gravity is pictured,

		-
	Proof of Computation	
	It is a proven fact that the speed of sound in water is 1446m/s. Our proof of computation	
3	vill demonstrate our math is sound through solving	
2	for the correct speed of sound in wateriat 120:	
	1 11	-
	$C = (K_{D})^{1/2}$ $K = -V \frac{\Delta P}{\Delta V}$	
2	= b1/1/2/12 9	
5	$C = \left(\frac{2.1 \times 10^{9} \text{ N/m}^{2}}{4.2 / \text{ cm}^{3}}\right)^{1/2} \qquad \text{K} = 2.1 \times 10^{9}$	
2		100
2	$C = [2.1 \times 10 / V/m^{-1}]^{-2}$	1
5	(999.7 Kg/m3)	1
2	$C = (2100(30.2)^{1/2})^{1/2}$	
50		
37	C = 1446.35 m/s	THE PARTY
222		
3		
1		

3.2 Mathematical Proof of Computation Using Water

Using the above computation, Group 18 completed an analog computation of the specific gravity of water using an ultrasonic sensor and the value it received passing through the tube. The Specific gravity was confirmed by comparing it to the universally known specific gravity of water.

4.1 Ultrasonic Reading Using Arduino and Ultrasonic Sensor

6 7 8 9 10 11 12 13 14 15	<pre>//int of int yoo Serial.println(f("initialize System")); //init Microphone pinMode(micPin, INPUT); } void loop() { Serial.println(micPin); }</pre>					
 Output	Serial Monitor ×			*	0	-
Not conr	nected. Select a board and a port to connect automatically.	New Line	•	9600 baud	t	•
14 14 14 14 14 14						
14 14 14						

An Arduino Uno was used to demonstrate the ability to compute distance through the windows placed in the pipe. A reading was achieved, meaning the criterion was met.

Test ID	Test Objective (Why)	Description of Prototype used and of Basic Test Method (What)	Description of Results to be Recorded and how these results will be used (How)	Estimated Test duration and planned start date (When)
1	Compare specific gravity of a liquid to theoretical specific gravity of that liquid, to ensure device gives accurate specific gravity reading	Fill capped off tube with wort, Display specific gravity with complete prototype. (comprehensive)	Results will be recorded for different wort samples, comparing to specific gravity of wort found by mass/volume	November 16 th (couple hours)
2	Ensure windows application displays and data logs information from Arduino, accurately and live.	Connect Arduino with application via Wi-Fi. (comprehensive)	Results being displayed via application will be compared to the results directly from Arduino	November 15 th (less than an hour)
3	Ensure all parts fit within tolerances and the device is sturdy.	Assemble all parts (comprehensive)	Solder wires to breadboard, fit breadboard, Arduino and sensors in case.	November 14 th (less than an hour)

Prototype III Test Plan

			Clamp case to	
			pipe.	
	Ensure Arduino	Arduino, Wi-Fi chip,	Power Arduino	
	sends information	and sensors used to test	through USB and	
4	to computer via	transfer of data	connect to	November 13th
	Wi-Fi	wirelessly.	windows using	
	VV 1-1'1	(analytical)	WI-FI chip.	

Target Specifications

Part #	Part Name	Description	Cost (\$)
1	Arduino Uno	Arduino UNO R3 Microcontroller	\$9.00
2	PVC Pipe	1ft in of 1 ¹ /2in ABS pipe	\$2.14
3	Wires	2 packs of jumper cables	\$2
4	Plexiglass	0.in x 0.75in x 0.5in thick	\$0.10
5	AC Adapter	USB Plug Power Adapter	\$12.74
6	Ultrasonic Transmitter	Transmits an ultrasonic signal	\$12.18
7	Ultrasonic Receiver	Detects an ultrasonic signal	\$12.97
8	USB (storage)	Kingston DataTraveler Exodia 32GB USB 3.2 Flash Drive	\$6.99
9	Sealant	Clear waterproof sealant	\$0.10
10	Arduino IED	IED	\$0
11	Arduino libraries	(Newping, SonarI2C, DueTimer)	\$0
12	CodeBlocks	Secondary IED	\$0
13	TinkerCad	Design software	\$0
14	USB Cable (A-B)	Arduino Uno Cable	\$7.00
15	Protoboard	Protoboard	\$1.00

16	Wifi Module	8266	\$4.79
Total			\$62.12
Total Used			\$23.93
Total Remaining			\$76.07

Updated Potential Risks

Issues with the error reading:

Because of the reflection of the 2 sealant pieces between the transmitter and the receiver, the output could vary.

Issues with the board design and the electrical designs:

There is a chance that the wires and the codes give us a wrong output which can be manually adjusted.

Issues with unprecise readings:

We might experience data that is close to what we get but it is coming from the wrong source, we can reduce the chance of that by testing multiple times.

Categories	Chance	Impact	Contingency
			With an extremely
			high frequency of
Issue with the	high	low	income readings, an
error readings	mgn	IOW	average of every 0.5
			second could
			eliminate these errors.
			All the wires and the
	n and		codes are changeable
Issue with the		low	at any time, it should
board design and			give us wrong output
the electrical			that we can compare
designs			to the internet info and
			tell if it is right or
			wrong.
			If the reading it keeps
Issue with the			output is
unprecise	low	moderate	incorrect(unprecise),
	10 w	moderate	and the output is still
readings			in a normal range,
			then it could create

	fatal errors to the
	system, which is hard
	to notice.

Conclusion

In prototype II, we refined many hardware problems found in the first deliverable; adapting according to the feedback received in our client meeting. The sensor windows were moved, the CAD housings were refined, and the pipe was tested for waterproofing and clarity. In addition to these advancements, we calculated our mathematical data required to compute readings from our sensor to specific gravity. Additionally, we wired and ran trials for the ultrasonic receiver. In the third prototype, we look forward to assembling and running more comprehensive and unified tests with the system.