
/*******************************

 Parts of the code are based off the adafruit_AHTx0 library example and utilizes functions from the wire

library, arduino library, and online sources listed below.

 -millis implmentation: https://www.baldengineer.com/arduino-how-do-you-reset-millis.html

 -serialEvent implementation https://www.arduino.cc/en/Tutorial/BuiltInExamples/SerialEvent

 -Arduino and raspberry pi communication: https://roboticsbackend.com/raspberry-pi-arduino-serial-

communication/

 -Muliplexer tcaselect function: https://www.bluedot.space/tutorials/connect-multiple-sensors-using-

i2c-multiplexer/

********************************/

#include <Adafruit_AHTX0.h>

#include <Wire.h>

#define TCAADDR 0x70

#define weightC (float)0.3 //Weight constant for exponential filter

#define boxDelay (unsigned long)5000 //In ms. Used to set delay time for after the box is closed. This is

to wait for temperature to stablize inside container

#define mesDelay (unsigned long)10000 //*In ms. This is for how long an error message should wait

before senidng again.

//Sets up the sensor objects

Adafruit_AHTX0 sensor;

sensors_event_t humd, temp;

//Boolean variables to hold sensor state (ON/OFF)

bool sensor1State;

bool sensor2State;

//Boolean variable to hold box state(Open/Closed). Starts off as open to prevent the code from running

at the beginning before getting a signal from pi

bool boxOpen=true;

//Temperature and humidity variable for each sensor

float t1,h1,t2,h2,wt=0,wh=0;//Current temp/humd reading and weighted temp/humd variables

float tavg,havg; //Averaged temp/humd varaibles

float idealTU=70,idealTL=20,idealHU=80,idealHL=20 ; //Variables for ideal temp/humd values

//Time variables used to keep track of time in order to prevent the arduino from spamming the

raspberry pi with warnings on each loop

unsigned long countH=0, countT=0,countD=0,countC=0,countS=0;//countH: humidity, countT:

temperature, countD=

/*NOTE: This timer is applied for each condition indvidually so if it detects an issue

with temperature at T=10s and humidity issue at T=20s, the temperature warning

message will send at T=25s (assuming 15s delay), and humidity at T=35s. */

//Variable to hold the input from pi

char message;

//END OF VARIABLE SETUP

/*

* tcaselect: Communicates with the tca9548a to select the correct

* i2c line for the sensor

*/

void tcaselect (uint8_t i) {

 if (i > 7) return;

 Wire.beginTransmission(TCAADDR);

 Wire.write(1 << i);

 Wire.endTransmission();

}

/*

* filterInput: Takes the averaged value temperature and humidity of the two sensors and

* uses the expoential filter to reduce noise in data

*/

float filterInput()

{

 wt = weightC * tavg + (1 - weightC) * (wt);

 wh = weightC * havg + (1 - weightC) * (wh);

}

/*

* checkSensors: Checks if the value readings on the sensors are valid

* If the sensors are reading significantly different values, it may indicate an issue

* with the sensor or the box

*/

void checkSensors() {

 if (abs(t1 - t2) > 15 || (abs(h1 - h2) > 30))

 {

 if ((unsigned long)(millis() - countS) > 20000) {

 Serial.println(F("Sensor reading abnormal"));

 countS = millis();

 }

 }

}

/*

* CheckConnect: Checks for connection status and populates the humd and temp with data from the

sensor if connected.

* The getEvent provided by the library returns true if connected and collects the data from sensor if it is,

removing

* the need to call getEvent again in the void loop.

*/

bool checkConnect(){

 if(!(sensor.getEvent(&humd,&temp))){

 if((unsigned long)(millis()-countD)>mesDelay){

 Serial.println(F("Sensor disconnected"));

 countD = millis();

 }

 return false;

 }

 else{

 return true;

 }

}

/*

* serialEvent: Special function that runs after each void loop which

* checks for any serial inputs it may have recieved and depending on

* the message recieved, it will change certain variables.

* If c is recieved, it will indicate that the box has been closed. If

* o is recieved, the arduino will know that the box is open

*/

void serialEvent(){

 while(Serial.available()){

 message = Serial.read();

 switch(message){

 case 'c':

 countC=millis();

 boxOpen=false;

 break;

 case 'o':

 boxOpen=true;

 break;

 /* Additional characters may be added for changing settings in the code dynamically

 * such as temperature range, boxDelay period, messageDelay period, and etc.

 case 'H':

 idealTU = 70;//Not likely to reach this temp(from testing). If it reaches this temp or above, may

incicate that something is wrong

 idealTL = 20;

 idealHU = 70;

 idealHL = 20;

 break;

 */

 default:

 Serial.println(F("Invalid input"));

 break;

 }

 }

}

void setup() {

 Serial.begin(19200);

 while(!Serial){

 delay(10);

 }

 //Initalizes the sensors

 tcaselect(0);

 sensor1State = sensor.begin();

 tcaselect(1);

 sensor2State = sensor.begin();

 //Checks if sensors are available

 if (!sensor1State) {

 Serial.println(F("Sensor 1 not detected"));

 }

 if(!sensor2State){

 Serial.println(F("Sensor 2 not detected"));

 }

 //If both sensors are available, it will wait for the 'c' input to start

 if(sensor1State&&sensor2State){

 Serial.println(F("Setup successful"));

 while(boxOpen==true){

 serialEvent();

 delay(300);

 }

 //Presamples data to prevent the sensor from sending unideal condition warnings

 for (int i=0;i<25;i++){

 tcaselect(0);

 sensor1State = checkConnect();

 if(sensor1State){

 t1 = temp.temperature;

 h1 = humd.relative_humidity;

 }

 tcaselect(1);

 sensor2State = checkConnect();

 if(sensor2State){

 t2 = temp.temperature;

 h2 = humd.relative_humidity;

 }

 if(sensor1State&&sensor2State){

 tavg = (t1+t2)/2;

 havg = (h1+h2)/2;

 filterInput();

 }

 }

 }

}

void loop() {

 //Stops the program from running while the box is open

 while(boxOpen==true){

 serialEvent();

 delay(300);

 }

 //Delays the program from running when the box has just recently been closed to wait

 //until the conditions inside the box is stabilized

 while((unsigned long)(millis()-countC<boxDelay)){

 delay(300);

 }

 //Checks if sensors are connected

 tcaselect(0);

 sensor1State = checkConnect();

 //If connected, it will take the data from sensors

 if(sensor1State){

 t1 = temp.temperature;

 h1 = humd.relative_humidity;

 }

 tcaselect(1);

 sensor2State = checkConnect();

 if(sensor2State){

 t2 = temp.temperature;

 h2 = humd.relative_humidity;

 }

 //if both sensors are detected, it begins to process that data, averaging out the sensor

 //reading and using the filterInput function.

 //It also checks if the readings are abnormal, but will not prevent the program from

 //running if is abnormal. It will provide a warning message.

 if(sensor1State&&sensor2State){

 checkSensors();

 tavg = (t1+t2)/2;

 havg = (h1+h2)/2;

 filterInput();

 //Checks if the filtered data is outside of the presest ideal conditions and

 //returns warning message if it is

 if(wt>idealTU||wt<idealTL){

 if((unsigned long)(millis()-countT)>mesDelay){

 Serial.println(F("Temperature not ideal"));

 countT = millis();

 }

 }

 if(wh>idealHU||wh<idealHL){

 if((unsigned long)(millis()-countH)>mesDelay){

 Serial.println(F("Humidity not ideal"));

 countH = millis();

 }

 }

 }

 delay(20);

}

