
GNG2101

Design Project User Manual

magnifierPLUS

Submitted by:

Accessibility8, A8

Erin Cox, 300051053

Alec Edward, 300115955

 Alexander Delisle, 300116627

Isabelle Tam, 300115159

Date: December 10th, 2020

University of Ottawa

Abstract

The capability of using a computer with ease is often overlooked, however, there is a

large fraction of the population who struggle with computer use due to a disability or

impairment. Although there are many virtual magnifiers that currently exist to help people with

visual impairment, they tend not to consider those who also struggle with dexterity or other

issues. As a result, they struggle with activating and navigating the magnifier, rendering it

useless or making computer usage an even more difficult task than it was before. Therefore,

there is a dire need for a new solution, a solution that considers people who struggle with more

than one impairment. Thus, there is magnifierPLUS, a magnifier that allows users to easily

activate and use. The magnifier consists of a magnifying window that follows the cursor on the

screen, where the magnification can be increased with the simple push of a button. The magnifier

is easily activated and deactivated by the push of a hotkey and does not require different

configurations of keys to be pressed. This design recognizes the broad range of disabilities and

struggles users may have that impact their ability to use a computer.

1

Table of Contents

Abstract 1

Table of Contents 2

List of Tables 3

List of Figures 4

2. Important Features, Functions and Capabilities 5
2.1 Software Prototype 5
2.2 Hardware Prototype 5

3. How The Prototype Was Made 6
3.1 Software Prototype 6

3.1.1 Arduino Leonardo Hot-Key Setup 6
Figure 3: Modified Button Code 8
3.1.2 Java Code 8

3.2 Hardware Prototype 15
3.2.1 Bill Of Materials 15

3.2.2 Equipment List 17
3.2.3 Instructions To Build 17

4. How The Prototype Works 18

5. Installation 19
5.1 Software Installation 19
5.2 Button Installation 19

6. Health and Safety 20

7. Troubleshooting 20

8. Recommendation For Future Work 21

9. Conclusion 22

References 22

APPENDICES 23
APPENDIX A: Java Magnifier Code 23
APPENDIX B: Arduino Leonardo Hot-Key Code 26

2

List of Tables

Table 1: B.O.M 14

Table 2: Equipment List 15

Table 3: Troubleshooting 18

3

List of Figures

Figure 1: Board Name 7

Figure 2: Default Button Input Code 7

Figure 3: Modified Button Code 8

Figure 4: Create a New Class 9

Figure 5: New Dependency 10

Figure 6: New Library From Maven 10

Figure 7: jnativehook 2.0.2 11

Figure 8: Import Statements 11

Figure 9: Variables 11

Figure 10: Construct 12

Figure 11: Update Region 12

Figure 12: Stop Method, getGui Method 13

Figure 13: showInfo Method 13

Figure 14: Main Method 13

Figure 15: nativeKeyPressed Method 14

Figure 16: Circuitry 16

Figure 17: Final Button 16

4

1. Introduction

In this user manual, the workings of the project are discussed. This includes how it

works, and how the users can access and use the key features of the product. The other sections

outline how the project was made, the operations behind the functionality, how to install and

perform regular maintenance, health and safety concerns, and a troubleshooting section if the

user is having trouble with certain features of the product. Lastly, the team summarizes the

recommendations for future work on this project, this section includes how the product can be

generally improved as well as how modifications could be made to help out people with other

disabilities who have difficulty using the device.

2. Important Features, Functions and Capabilities

2.1 Software Prototype
The software component of our project is central to the project overall. The magnifier

software allows users to read text, navigate websites, and use social media. The magnifier

is able to zoom up to three times at preset intervals which can be changed with tweaks to

the magnifier code. The software component is intended to remain active for as long as

the computer is active to allow users to activate the magnifier easily through the button

without interacting with an onscreen menu which is not suitable for the users with

dexterity issues and visual impairments. The key listener software currently listens for the “`”

key but could easily be changed to a key with the least use on the keyboard if needed. The

software is designed to have the magnifier window to follow the cursor, the size of the window

can be adjusted as needed within the magnifier code. By following the cursor, the magnifier is

exceptionally easy to use as the magnified area will be updated as the cursor is moved so the user

is not required to input additional parameters.

2.2 Hardware Prototype

The hardware component of our project was designed to serve a user base with a range of

accessibility needs, as a result the features of our design were chosen to accommodate these

needs. We chose a large button inside a project box to be connected to the computer to give our

software an activation method without navigating through on screen menus. The external button

itself has a translucent cover to allow light from an LED within the box to indicate to the user

5

that the button is active. When the button is depressed, the light turns off and will remain off as

long as the button is pressed. The button on the interior button is pressed via the external button

which then interacts with the Arduino Leonardo within the box, the interior button was selected

to be particularly ‘click-y’ to give the user haptic feedback when the button is pressed. In

addition, the button box is suited for a COVID-19 environment, the usb output is sealed with a

gasket and the remaining holes are well sealed meaning that the box could be sprayed with a

disinfectant to accommodate multiple users on one computer.

3. How The Prototype Was Made

This section will describe how the prototype was made, including the materials needed to

make the hardware portion as well as the code needed for the software portion.

3.1 Software Prototype

There are two main components of the software prototype. First, is the Arduino code that

needs to be compiled and uploaded to the Arduino Leonardo. Second, is the Java code that is

used for the magnifier and key listener.

3.1.1 Arduino Leonardo Hot-Key Setup

1. Download Arduino from the following link

https://software.intel.com/en-us/get-started-arduino-install

2. Open Arduino and change board to “Arduino Leonardo” and select the correct serial port

for the Arduino.

6

https://software.intel.com/en-us/get-started-arduino-install

Figure 1: Board Name

3. Download button input code from

https://www.arduino.cc/en/Tutorial/BuiltInExamples/KeyboardMessage and open it as a

new project in Arduino.

Figure 2: Default Button Input Code

7

https://www.arduino.cc/en/Tutorial/BuiltInExamples/KeyboardMessage

4. The key listener will, by default, output “You have pressed the button n times” where n is

the number of presses. Change the Keyboard.Print line “Keyboard.print(“`”) if desired, as

currently configured the key listener will detect the “`” key but this can be easily

changed, any character that does not have a predefined function within Arduino.

5. Verify and upload the modified code to the Arduino Leonardo, if the Arduino is equipped

with a button and is plugged into the computer after the code has been uploaded, a button

press will print “`” as keyboard output.

Figure 3: Modified Button Code

3.1.2 Java Code

1. Download IntelliJ IDEA from: https://www.jetbrains.com/idea/download/#section=linux

8

https://www.jetbrains.com/idea/download/#section=linux

2. Create a new project, name it “KeyListener”

3. Right click src, located on the left side of the screen, hover over new and click new class.

Figure 4: Create a New Class

4. Name the new class “test”

5. From File, Click Project structure

6. From Modules, click dependency and then library, as seen in figure #.

9

Figure 5: New Dependency

7. Once you have clicked Library, select a new library from Maven.

Figure 6: New Library From Maven

10

8. Search “jnativehook” and select the following.

Figure 7: jnativehook 2.0.2

9. Now, import the necessary libraries by writing them above the public class.

Figure 8: Import Statements

10. Extend JFrame and implement NativeKeyListener on the same line as the “test” public

class. This is seen in figure #.

11. Next, initialize variables under the public class “test” created in step 4.

Figure 9: Variables

12. Next, create a construct, this construct will include the magnifier code.

11

Figure 10: Construct

13. Now, create a public void method called “updateRegion” that holds magnifier code to

update the magnification region.

Figure 11: Update Region

12

14. Create a public void method named “stop”, as well as another public method named

“getGui()”

Figure 12: Stop Method, getGui Method

15. Now, create a public void method named “showInfo”

Figure 13: showInfo Method

16. Next, create the main method. This method will register the global screen listener and call

the test method.

Figure 14: Main Method

17. At this point, there should be an override public method named “nativeKeyPressed” that

has been initialized. This method will be responsible for listening for the hotkey. Write in

the following code.

13

Figure 15: nativeKeyPressed Method

18. Leave the “nativeKeyReleased” and “nativeKeyTyped” methods empty.

19. Run the code by pressing the green run button on the top right hand side of the screen.

3.2 Hardware Prototype

3.2.1 Bill Of Materials

Table 1: B.O.M

14

Material Cost Where To Buy

Arduino Leonardo $24.91 [1]

Wire ~$0.05 (A very small amount

was used)

[2]

3.2.2 Equipment List

Table 2: Equipment List

3.2.3 Instructions To Build

The Button and LED light need to be attached to the Arduino Leonardo, in order to do

this they will be placed onto a circuit board and then soldered to ensure for secure connections.

15

USB Cord $12.99 [3]

Resistor $0.24 [4]

Button $1.66 [5]

LED Light $0.30 [6]

Circuit Board $2.09 [7]

Button Casing $5.05 [8]

Equipment Use

Soldering Iron Solder Components to Circuit Board

Micro USB to USB Cable Connect battery pack to NodeMCU

Super Glue Glue Circuit Board to Plastic Case

Drill Make Holes to Insert Internal Supports for

Arduino, Button, USB Output

Screwdriver Screw in Supports for Arduino Within the

Box, Close Box using Machine Screws

Figure 16: Circuitry

The resistor, Button and LED should be connected as seen in figure 1. Where the white

wire is soldered to pin 4, the red wire is soldered to the 5V pin and the black wire is soldered to

the GND pin. Once Soldered, the circuit board should be super glued to the four small stands

located within the plastic cover. The micro USB should be plugged into the arduino leonardo and

then fed through the button casing. The final result should resemble that of figure 2.

Figure 17: Final Button

4. How The Prototype Works

The java component of the prototype and the button component work together to create a

seamless design. The Java code is programmed to open the magnification window if the

backwards quote key on the keyboard is pressed. The Arduino Leonardo is coded using Arduino

software to act as the backwards quote key. This means that everytime the button is pressed, the

arduino leonardo outputs a backwards quote symbol. The java code is globally listening for the

16

backwards quote key to be pressed. If the key is pressed once, the magnification window will

open and an integer within the code named “on” that was initially set to 0 will be set to 1. If the

key is pressed again, the magnification factor will increase by two, and on will be set to 2. If the

key is pressed again, the magnification factor is increased by two and on will be set to 3. If the

key is pressed one last time, on will be set to 0 and the magnification window will be set to

invisible.

5. Installation

This subsection will instruct the user on how to install the prototype. Maintenance on the

prototype is not necessary.

5.1 Software Installation

 The Java code for the magnifier can be created using the instructions found from section

3.2.1. However, the Java code can also be found and installed from the Accessabiltity-8

MakerRepo found at https://makerepo.com/ecox058/gng2101a8-magnifierplus.

Instruction to install the Java code are as follows;

1. Download IntelliJ IDEA from: https://www.jetbrains.com/idea/download/#section=linux

2. Go to https://makerepo.com/ecox058/gng2101a8-magnifierplus and download the zip file

named “jframe.zip”

3. Open the src file from this zip file

4. Follow steps 5-8 from section 3.2.1

5. On the top right corner of the screen, click the green run arrow.

5.2 Button Installation

Once the button is made using the instructions found in section 3.2.3 and the Arduino

Leonardo has been configured using instructions found in section 3.1.1, the usb simply needs to

be plugged into the computer. When the USB is plugged in, the computer will recognize the

button as an additional keyboard.

17

https://makerepo.com/ecox058/gng2101a8-magnifierplus
https://www.jetbrains.com/idea/download/#section=linux
https://makerepo.com/ecox058/gng2101a8-magnifierplus

6. Health and Safety

The software component of magnifierPLUS in no way interacts with the mic or camera of

the user, which ensures the safety and privacy of the user. Anyone who uses this product, does

not have to worry about an invasion of privacy or data being recorded.

The hardware component consists of the button, the button box and its inner content. The

internal wiring was safely done and follows basic rules of electrical circuits. Furthermore, the

wiring was checked by a PM. There is minimal to no risk of electrocution as all the wiring is

contained inside a box. An important safety feature of the box in relation to the pandemic is that

it is sealed and made of material that can be easily sanitized. Therefore, should the computer lab

open back up, the button and button box can be disinfected between uses to ensure no germs or

viruses are spread.

7. Troubleshooting

The troubleshooting section is a table which contains some frequent or probable problems

that the user may have. These problems correspond to a certain solution or course of action. The

possible problems are categorized as being either: fixable by the user or contact manufacturer. If

a problem can be fixed by the user the steps to do so are included. If the problem is technically

complex, the problem can be fixed by contacting the manufacturer. In cases where the

manufacturer must edit the software, a new file will be sent to you after the problem has been

resolved.

Table 3: Troubleshooting

18

Potential Problem Solution

“Application will not start when I double click

it”

Do you have java installed on your computer?

This is a requirement for running this

application. The latest Java can be

downloaded here: https://www.java.com/en/

Also assure you have followed all instructions

in the installation section (5.1)

https://www.java.com/en/

8. Recommendation For Future Work

While our solution, magnifierPLUS, is an effective solution to our project, it could be

improved given increased budget and time allotment. For future work on the magnifier, further

simplification of the installation process and fine tuning for users are the main goals. By creating

a single downloadable package for our software, it could be more easily implemented as a

consumer technology rather than as a bespoke solution as it currently exists. In the case where a

single downloadable package was created, it could be added to the arduino box to automatically

download when the button is plugged into a computer by the user. In addition, the button box

19

“Tactile button not lighting up” Make sure the button’s USB cable is firmly

connected to your computer. Otherwise, there

could be a problem with your USB port. Try

switching to another USB port

“Tactile button is lighting up but won’t launch

the magnification window”

There could be an issue with the software.

Please contact the manufacturer.

“The window is too small” An adjustment to the code needs to be made.

A trained software expert can change the size

of the window in the java file. Please contact

the manufacturer.

“The colour scheme is not right for me” An adjustment to the code needs to be made.

A trained software expert can change the

colour scheme in the java file. Please contact

the manufacturer.

“I need to use the hotkey for other purposes” An adjustment to the code needs to be made.

A trained software expert can change the

hotkey to something more convenient for you.

Please contact the manufacturer.

could be further refined to give improved feedback by putting the indicator LED on the outside

of the box and/or adding a buzzer to give audible feedback when the button is pressed. In terms

of software, the project could be refined to detect text boxes i.e. login screens requiring username

and password and activate the magnifier automatically.

9. Conclusion

Our final solution offers a viable solution to the initial problem statement, the users of our

solution will be able to navigate web pages, read text, and use social media with greater ease. For

future improvements of our project, the magnification window size could be customizable on the

fly. Additionally, the project could be further improved with an alteration to the magnifier code

to view video through the magnifier as well as improve the fidelity of the image that the

magnifier produces.

20

References

21

[1] [Online]. Available:
https://www.digikey.ca/en/products/detail/arduino---bcmi-us-llc/A000052/6212657?utm_ad
group=Evaluation%20Boards%20-%20Embedded%20-%20MCU%2C%20DSP&utm_sourc
e=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards
%2C%20Kits%2C%20Programmer.

[2] [Online]. Available:
https://www.amazon.ca/CBAZYTM-Stranded-Flexible-Silicone-Electric/dp/B075M7YZXC
/ref=sr_1_6?dchild=1&keywords=electronics+wire&qid=1606843494&sr=8-6.

[3] [Online]. Available:
https://www.amazon.ca/gp/product/B012S16PES/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=
UTF8&psc=1.

[4] [Online]. Available:
https://www.digikey.ca/en/products/detail/vishay-beyschlag-draloric-bc-components/CCF55
10K0FKE36/9642551.

[5] [Online]. Available: https://www.digikey.ca/en/products/detail/c-k/D6L90-F2-LFS/1531278
.

[6] [Online]. Available:
https://www.digikey.ca/en/products/detail/cree-inc/C503B-BCS-CV0Z0461/1922944?utm_a
dgroup=LED%20Indication%20-%20Discrete&utm_source=google&utm_medium=cpc&ut
m_campaign=Shopping_Product_Optoelectronics&utm_term=&productid=1922944&gclid
=CjwKCAiA8Jf-BRB-EiwA.

[7] [Online]. Available:
https://www.digikey.com/en/products/detail/chip-quik-inc/SBBTH1510-1/5978273.

[8] [Online]. Available:
https://www.digikey.ca/en/products/detail/omron-automation-and-safety/A22RL-TG-M/283
4845 .

APPENDICES

APPENDIX A: Java Magnifier Code
import javax.swing.*;
import org.jnativehook.GlobalScreen;
import org.jnativehook.NativeHookException;
import org.jnativehook.keyboard.NativeKeyEvent;
import org.jnativehook.keyboard.NativeKeyListener;
import java.awt.*;
import java.awt.event.*;
import java.awt.image.BufferedImage;

public class test extends JFrame implements NativeKeyListener {
 Robot robot;
 JFrame frame;
 int on = 0;
 int zoomFactor =2;
 PointerInfo pi;
 JPanel gui;
 JLabel output;
 Timer t;

 public test() throws AWTException {

 frame = new JFrame("Simple GUI");
 robot = new Robot();
 gui = new JPanel(new BorderLayout(2, 2));
 output = new JLabel("point to see zoom");
 gui.add(output, BorderLayout.PAGE_END);
 final int size = 200;
 final BufferedImage bi = new BufferedImage(size, size,
BufferedImage.TYPE_INT_RGB);
 final JLabel zoomLabel = new JLabel(new ImageIcon(bi));
 gui.add(zoomLabel, BorderLayout.CENTER);

 ActionListener zooomListener = (ActionEvent e) -> {

 pi = MouseInfo.getPointerInfo();
 Point p = pi.getLocation();
 Rectangle r = new Rectangle(
 p.x - (size / (2 * zoomFactor)),
 p.y - (size / (2 * zoomFactor)),
 (size / zoomFactor),
 (size / zoomFactor));
 BufferedImage temp = robot.createScreenCapture(r);
 Graphics g = bi.getGraphics();
 g.drawImage(temp, 0, 0, size, size, null);

22

 g.setColor(new Color(255, 0, 0, 128));
 int x = (size / 2) - 1;
 int y = (size / 2) - 1;
 g.dispose();

 zoomLabel.repaint();
 showInfo();

 };

 t = new Timer(40, zooomListener);
 t.start();
 GlobalScreen.addNativeKeyListener(this);
 while (true) {
 Point p = MouseInfo.getPointerInfo().getLocation();
 frame.setLocation((p.x + 55), (p.y + 20));
 updateRegion();

 }

 }

 public void updateRegion()
 {

 final int size = 200;
 BufferedImage bi = new BufferedImage(
 size, size, BufferedImage.TYPE_INT_RGB);
 JLabel zoomLabel = new JLabel(new ImageIcon(bi));
 pi = MouseInfo.getPointerInfo();
 Point p = pi.getLocation();
 Rectangle r = new Rectangle(
 p.x - (size / (2 * zoomFactor)),
 p.y - (size / (2 * zoomFactor)),
 (size / zoomFactor),
 (size / zoomFactor));
 BufferedImage temp = robot.createScreenCapture(r);
 Graphics g = bi.getGraphics();

 g.drawImage(temp, 0, 0, size, size, null);
 g.setColor(new Color(255,0,0,128));
 int x = (size/2)-1;
 int y = (size/2)-1;
 g.dispose();

 zoomLabel.repaint();

 showInfo();

 }

 public void stop() {
 t.stop();
 }

 public Component getGui() {
 return gui;
 }

23

 public void showInfo() {
 pi = MouseInfo.getPointerInfo();
 output.setText("Zoom: " + zoomFactor + " Point: " + pi.getLocation());
 }

 public static void main(String[] args){
 try{
 GlobalScreen.registerNativeHook();
 } catch (NativeHookException ex){
 System.exit(1);
 }

 try {
 new test();
 } catch (AWTException e) {
 e.printStackTrace();

 }

 }

 @Override
 public void nativeKeyPressed(NativeKeyEvent e) {

 if (e.getKeyCode() == NativeKeyEvent.VC_BACKQUOTE && on == 0) {
 zoomFactor = 2;
 frame.setDefaultCloseOperation(EXIT_ON_CLOSE);
 frame.setAlwaysOnTop(true);
 frame.setResizable(false);
 frame.add(getGui());
 frame.pack();
 frame.setAlwaysOnTop(true);
 frame.setVisible(true);

 WindowListener closeListener = new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent e) {
 frame.dispose();
 }

 };

 on = 1;
 frame.addWindowListener(closeListener);

 } else if (e.getKeyCode() == NativeKeyEvent.VC_BACKQUOTE && zoomFactor
== 2 && on == 1) {
 zoomFactor = 4;
 on = 2;
 }else if (e.getKeyCode()==NativeKeyEvent.VC_BACKQUOTE && zoomFactor ==
4 && on == 2){
 zoomFactor = 6;

24

 on =3;
 }

 else if (e.getKeyCode() == NativeKeyEvent.VC_BACKQUOTE && on == 3) {
 frame.setVisible(false);
 on = 0;

 }

 }

 @Override
 public void nativeKeyReleased(NativeKeyEvent nativeKeyEvent) {

 }

 @Override
 public void nativeKeyTyped(NativeKeyEvent nativeKeyEvent) {

 }

}

APPENDIX B: Arduino Leonardo Hot-Key Code

/*

 Keyboard Message test

 For the Arduino Leonardo and Micro.

 Sends a text string when a button is pressed.

 The circuit:

 - pushbutton attached from pin 4 to +5V

 - 10 kilohm resistor attached from pin 4 to ground

 created 24 Oct 2011

 modified 27 Mar 2012

 by Tom Igoe

 modified 11 Nov 2013

 by Scott Fitzgerald

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/KeyboardMessage

*/

#include "Keyboard.h"

25

const int buttonPin = 4; // input pin for pushbutton

int previousButtonState = HIGH; // for checking the state of a pushButton

int counter = 0; // button push counter

void setup() {

 // make the pushButton pin an input:

 pinMode(buttonPin, INPUT);

 // initialize control over the keyboard:

 Keyboard.begin();

}

void loop() {

 // read the pushbutton:

 int buttonState = digitalRead(buttonPin);

 // if the button state has changed,

 if ((buttonState != previousButtonState)

 // and it's currently pressed:

 && (buttonState == HIGH)) {

 // increment the button counter

 counter++;

 // type out a message

 Keyboard.print("`");

 //Keyboard.print(counter);

 //Keyboard.println("");

 }

 // save the current button state for comparison next time:

 previousButtonState = buttonState;

}

26

