GNG5140

Design Project User and Product Manual

CITY POLLUTION MONITORING

Submitted by:

Adrian Iannantuono, 300071774
Drishya Suresh, 300322663
Max Shui, 300259431
Myron Soares, 300346181

Tarin Sultana, 300393224

20/12/2023

University of Ottawa

Table of Contents

1 INEFOAUCTION...ccueeeiueieniiieiiseensnecsneisneessseessnessesssstsssessssssssnsssassssessssssssnsssassssasssssssassssassssassssssssasss 1
2 OVEIVIBW.uueeiueerrecsannssansssncsssecssnssssssssassssesssnssssssssessssessssssssssssassssssssssssassssassssssssssssassssasssssssassssasess 1
3 Getting SLATTEM...cccevuereisuriersnrcssnnicssnrisssnnicssnnessssnessssesssnssssssosssssosssssosssssosssssossssssssssssssssssssssssssnsss 4
3.1 System Organization & NaAVIZAtION.ceerieeriierieeiierieeteesteeieesteereessreereesaaeeseeseneensees 6
I B B = (011101 2T o O PRRPSPRR 6

3.1.2 POIUtION HISTOTY...cuiiiiiiiiieiieeie ettt ettt ettt et siaeebeesaaeesbeesnaeensaens 7

I G B = (S 140 o PRSP 8

4 Troubleshooting & SUPPOTt.....cueiiciviiiisrinisiisisnnessssncsssicssssisssssssssssssssssesssssssssssssssssossssssssssass 9
4.1 Error Messages or BERaVIOTS.coviiiiiiiiiiieiceiee ettt et 9

4.2 MAINEENANCE. ...ttt ettt ettt ettt et e e s et e bt et e s bt et e eate s et et e estesbtenbeeatesbeenbeeneesneenees 9

T B 1 0] 010 A U P STSRTSR 9

5 Product DoCUMENEAtION....c.uciieeirenisrenseniseecssenssnesssesssancssnsssessssesssnssssssssassssessssssssssssassssassanssssasss 9
5.1 MeChanical dESIGN.........eeuieriieiiieiiieiie ettt ettt et et e et e et e e taeesbeeseeenbeessaeenseeseeenne 10
5.2 EIECtrICAl AESIZN...ccuiieiiieiiieiieiiie ettt ettt et e et e et esabe e b e e easeenseeenseenseesnseennes 13

5.3 SOFEWAIE AESIZN.....iiiuiieiieiiieeiieeie ettt ettt ettt e te et e et e e sbeeeabe e seeesbeenseesnseenseeenne 14
TR B I Y o V1] To X @ Lo = PP PERRPR 14

5.3.2 WED SEIVET ...ttt ettt et st e 15

5.4 BOM (Bill Of MaterialS)......cccueeiuieiiiieiiieiieiiieecieesiie et eseeeeteesieeereesseesseesseessseessaesnseenneanns 20
S54.1 EQUIPMENE LISt....coiiiiiiiiiieiieiie ettt ettt ettt ettt etaessaeebeessseensaesnseenseans 21

5.5 Testing & ValIdatioN........cccuveiiieiiieiiieiieeie ettt et saeeteeseeebeessaeeseesaaeesseessneensaens 21
5.5.1 PhySiCal PrOtOTYPE. .. .viieieeiiieiieeiieeiieeit ettt ettt et e e beesaeeebeessaeesbeessaeensaens 21

5.5.2 TESHING PIOCESS. .. cccuiieiieiiieiieiie et eette et este e estte et estteesbeestaeesseensaessseessaeasseenssesnsens 25

5.5.3 Target SPecs VS ACtUAL SPECS.....ueiviiiiiiiieeiiieeiieeceeeeee et 29

6 Conclusions and Recommendations for Future Work...........c.ccoeiccvvercscsercssnicscnnicssnnscsnnns 30
A 3 10] L0 1] 11 31
8 APPENDIX I: DeSIZN FileS....ccocveierrnicisnicssnncssnisssanisssancssssnessssnssse 32

9 APPENDIX II: Other APPendiCeS.....cccceeersrrcssaricssaresssaresssssesss 33

List of Figures

Fig 1: Pollution Monitoring MOAULE..........c.oeiiiiiiiiieieeese ettt ettt e e eneeneen 2
Fig 2: POWET DULON ON ...ttt ettt ettt et et ettt e st e sbtesatesaeesaeesaeees 4
Fig 3: Device connected to Internet and GPS...........ooiiiiiiiiiiii e 4
Fig 4: Device not connected to WiFi or GPS.......ccoiiiiiiiiiiteteee s 5
Fig 5: Device charging an Apple WatCh..........cooeiiiiiiiiiiiieee et 5
Fig 6: Charging the AeVICE........ccvuiiriieiieiieiieit ettt et eteeteete v e s e staestbestbessbessbesssesssessaesssesssesssesssesssenssesns 6
FAg 72 HOIMEPAZE. .. oo cevieeeiie ettt ettt ettt ettt e ettt e et e st e e teeesbaeestbeessaeessaeessseessaessseesssaesssaesssaeassaesnseeesssenn 6
Fig 8: POIIULION HISTOTY...c.ueiiiiiiiiieiieeie ettt ettt h e bt e st e bt e bt e bt e bt e be e beenbeenbeenseenteenneeas 7
FIg 91 HEAMAD. ..ottt e b ettt b e bt ettt bt e bt et e bt bt et et bt et entenees 8
Fig 10: Exploded view of Prototype IL........cooooiiiiiiiiie et 10
Fig 11: Cross-section views showing component placement............c.cccververververeeseeseeseesseesseesseesseessesnns 11
Fig 12: VESA MOUNTING SOIULIONS.eeiiiiiiieiiieiiiestieeiteeiteesiteesiteesteesseessseessseesssaeesseeessseessessssessssesssnes 12
Fig 13: Comparison of Prototype II size with Iphone™ 14...........ccoooiiiiiiiiii e 13
Fig 14: FINal SCREMALIC.c..eiuiiiiiiiiiitiiiee ettt sttt sttt st eaees 13
Fig 15: Final prototype aSSEMDIY.......cvccvieriieiiieiieiieieeteereete et e seeestestaeseeesseessaessaesseessaesseesseesseessaesseessennns 14
Fig 16: GitHub branch created for final prototyPe.......cccevierierierieiienieeie ettt s 15
Fig 17: Integration of Arduino With Web SEIVET..........ccciiieiiierieeiiieeieeetee st e ereeeiee e e teeeeeeeeveesebeesaneenes 16
Fig 18: Github repository created for the Web SETVET...........ecciiiiiiiiiieiieieseeee et 16
Fig 19: Home screen of Web appliCation..........ccvecierierienieniieriieriterieesie ettt eteeteete e snresnseennesenesneeenns 17
Fig 20: Heatmap showing CO2 concentration across Downtown Ottawa...........ccccceeeeeieneneneeneeneneneenne. 18
Fig 21: Variation of pollutants, temperature, and humidity............ccooceririereniniineeeeeeeee e 19
Fig 22: POWET DULLON ON.....ooiiiiiiiiciieccie ettt ete e et e et e et e e eaeestveessbeesssasasseessseeesseesssseensseesssessssasnsnes 22
Fig 23: Heroku Web app NOStING........ooiuieiiiiiiiieie ettt ettt ettt e sbe e bt e b eeeas 23
Fig 24: Device Operating OULSIAE.........ccvertieriieriieriieiiesitesieesieeseetteteeteeteeseesseesseenseesseenseenseenseensesnsesnsennns 23
Fig 25: DEVICE I/ttt sttt sttt ettt be st e st et e bt e st et e te bt et eneas 23
Fig 26: Device charging an APple WatCh...........cccuevieiiiiiiiieiieieee ettt eer e v v e sveseneeenas 24
Fig 27: Device internal battery being charged...........ccooviiviiiriieiiececeeee e 24
Fig 28: Battery Level/Charge/Discharge INdiCator...........cooviiieiiiiiiiiiie et 25
Fig 29: Example POST request SENt 10 SETVET......ccueruteteriirtieiteierienteeitentestesieetestestesteestentesbesseeseeneesseeneenses 25
Fig 30: SQL server CoNtaining data............ccveeuierieerieeiieeieeieeieseesresressesssesssesseesssesssesssesssessesssesssesssesssees 26
Fig 31: Device Connected to Internet and GPS............ooooiiiiiiiiie e 27
Fig 32: Device Not Connected to Internet and GPS...........c.ccccviiiiiiiiiiiie e 27
Fig 33: Device connected to the Internet but not GPS...........cccooiiiiiiiii e 28
Fig 34: Device POWET CONSUMPLION tEST.....cc.ueruirtiruietertirtieiterie st stteitest sttt ete sttt eteste s bt et etesaesbeeneensesneas 28
Fig 35: Application 10gs 0N HETOKU.ccciiiiiiiiiiieiie ettt 29

List of Tables

TADIE 1. ACTOMYIMS. .. .eiiiiiieiiieiieeiee it et te et e et e eite et e eetaeebeesabe e beessseeseessseesseassseenseesnseenseessseenseennseens 0
Table 2: Bill of Materials (BOM).......cc.cooiiiiiiiiieeiiecieeitete ettt ettt sve s e seneeneees 20
Table 3: ReSUItS COMPATISON......ccviiiieriiiiiieeieetie ettt e ete et e steebeesbe e bt e seaeesaessseesseesssesnsaensseenns 29

List of Acronyms

Acronym Definition
CO2 Carbon Dioxide
LED Light Emitting Diode
LCD Liquid Crystal Display
PM2.5 Fine particulate matter (particles 2.5um or
less in diameter)
GPS Global Positioning System

Table 1: Acronyms

1 Introduction

This User and Product Manual (UPM) provides the information necessary for users,
technicians, and engineers to effectively use the Pollution Monitoring Module, and for
prototype documentation. The intent of this manual is to ensure the collection of accurate
and reliable air pollutant data that can be used for further research by the City of Ottawa or
any interested parties.

In the development of this manual, we assume a basic familiarity with technological
devices, adherence to safety guidelines, and an interest in utilizing personal monitoring
technology for research or for personal health and well-being. We further assume that users
will comply with all applicable laws and regulations concerning the use of such devices.

An overview of the topics covered in this manual is given below:

e Section 2 gives a basic introduction to the problem and the solution our product offers.
It also sets the criteria that distinguishes our product from similar items on the market.

e Section 3 describes how to set up the module in non-technical terms for users
unfamiliar with the product. It describes all functions that can be performed by the
module.

e Section 4 gives an overview of the common error messages that the product can show
and steps to resolve the same.

e Section 5 is a technical walkthrough of the final prototype developed. It describes the
components and tools used, as well as steps to recreate the product. It also gives an
overview of the testing performed on the system.

e Section 6 covers the final comments and future work recommendations for our
product.

2 Overview

Rising air pollution levels pose a significant hazard to the general population. Due to rapid
urbanization and an increasing number of fossil fuel-powered vehicles, urban areas are
particularly susceptible to the detrimental effects of air pollution. In response to this
environmental challenge, transportation companies are gradually transitioning to electric
vehicles with the aim of mitigating pollutant and greenhouse gas emissions. Governments
worldwide are also incentivizing the adoption of sustainable energy practices and electric
vehicles, and imposing other restrictions with the aim of accelerating the switch from fossil
fuel powered transportation options.

The City of Ottawa is funding the development of a portable module that can collect data on
varying pollution levels throughout different times of the day within the city. They proposed
a community-based data collection program where volunteers could carry around a portable
monitoring system during their daily commute and activities, and record the fluctuating
pollutant levels around them throughout the day. Their aim is to use this data to study the
correlation of the concentration of electric vehicles within a neighborhood with the
concentration of pollutants in the area. The device is also intended for use in monitoring and
potentially predicting pollution levels in an area over time.

1

Our prototype draws inspiration from an existing e-bike mounted module, with
enhancements tailored to meet the requirements set by the City of Ottawa. Notable
adjustments include scaling down of the module to a size conducive for volunteer users to
effortlessly carry the device around with minimum obstruction to their day-to-day activities,
i.e.; small enough to clip onto a backpack, a bike, or a mobile phone. This design ensures
that a wider area can be surveyed for pollutants, as volunteers are not restricted to e-bike
users who may or may not follow the same paths for their daily activities. The module’s
ingress protection has been upgraded to ensure functionality in all weather conditions, for
reliable data collection. A power bank feature has also been incorporated in our design to
augment functionality and serve as an incentive for volunteers to carry it regularly.

129

=
Lo

Fig 1: Pollution Monitoring Module

Our product is a microcontroller-based system that uses temperature, humidity, CO2, and
particulate matter (PM2.5) sensors to monitor the air quality of the surrounding
environment, and sends the collected data over WiFi to our web server to be saved into a
database. The product only needs to be switched on by pressing a button on the side of the
module and has to be connected to WiFi, for recording of the data. If the user does not want
to connect it to WiF1i, the module can also serve as a personal air quality monitoring device,
where the user can see the readouts on the module’s LCD screen, but the collected data will
not be stored on the server. It can also be used as a power bank. The LED on the module
indicates the battery level. The product also comes with a web application that can be
accessed here and can be used to view the latest readings collected, along with a heatmap
for CO2 pollution and variations in the pollutant levels over the last day on which data was
collected.

https://city-pollution-app-a4a59953b054.herokuapp.com

We believe our product stands out from other similar devices on the market due to the
following factors:

Visibility of readings

The system has an LCD screen mounted on the top of the device. This allows the user to
read the real-time sensor readouts for the level of pollutants in that area. A window was
added to indicate the battery charge percentage of the device as well.

User control

The product is designed such that there is very little user engagement. With the single click
of a button, the device and components are powered on and run efficiently with real-time
readings. The web app also requires minimal user input to display the data visualizations.

Charging capability

To incentivize the use of this product the device comes with an inbuilt power bank
capability, which allows the user to charge their electronic device while simultaneously
using the device to measure pollutant levels.

Form factor

The device was designed while keeping target specifications comparable to a typical
mobile device such as an iPhone in footprint. The client requested a compact device to
improve ease of use and to make it easy for users to carry around when they commute.

Minimalist design

The product was designed to showcase very few electrical components and only the
necessary components like the LCD screen, power button, and charging ports are visible to
the end user.

Accuracy of readings

The product was designed to get as accurate readings as possible. This was done by
incorporating a fan to ensure consistent airflow over the sensors for better sensor readouts,
and through the selection of self-correcting true sensors.

Ease of Use

Simple 1-button operation allows for anyone to pick up and immediately use the unit. By
implementing a standard VESA hole pattern on the back of the device, it allows for the
attachment of a variety of mounts. This allows the module to be attached to a vehicle or
backpack to make it easier to carry around.

Ingress protection

O-rings have been used between the housing and lid for optimal protection. The use of a
waterproof fan, sealant in strategic locations, and O-rings was to protect the internal
electronic components from moisture and debris ingress. The use of these components
increased ingress protection and the ability to operate in all expected environmental
conditions.

3 Getting started

The system is simple to set up, and only needs to be turned on by pressing the button on the
side of the module. When the device is ON, it will be indicated by the button lighting up as
shown in the image below.

Fig 2: Power button ON

An LED on top of the module indicates the amount of power left in the power bank. There
is also an LCD screen that shows the pollutant levels, WiFi, and GPS status, as well as the
current date and time. Text at the bottom of the screen also shows the user how long ago the
data was uploaded to the server. When connected to WiFi, data is uploaded to the server
every 10 seconds. Figure 3 shows the display when connected to WiFi and GPS.

Fig 3: Device connected to Internet and GPS

The module is only able to connect to GPS when there is a clear view of the sky; this means
that it cannot connect to GPS while indoors. Figure 4 shows the display when the module is
not connected to WiFi or GPS. The data can only be sent to the server while the module is
connected to WiFi.

g —
. St

\ ‘\ ", .\- C b N\

Fig 4: Device not connected to WiFi or GPS

In order to use the device as a power bank, simply plug in the USB charger to the charging
port on the side of the device as shown in the picture below.

Fig 5: Device charging an Apple watch

To charge the device, connect a USB-type cable to the power outlet port on the side of the
device as shown below. The power outlet supports up to SV/2A of power output. The
battery indicator lights will flash while charging.

Fig 6: Charging the device
To turn the device off, simply press the power button again.
System Organization & Navigation

The web application has three main pages - the Homepage, Pollution History, and Heatmap.
It can be accessed at the following link:

https://city-pollution-app-a4a59953b054.herokuapp.com

3.1.1 Homepage

City Pollution Monitoring

Pollution History About Us

Location

45.48 4.
Temperature Humidity —\ 120

26.45 30.61 NS o

/s Airport

45.44

45.42 1

45.4

€02 (ppm) PM2.5 (pg/m3)

9465.00 24.0 s JARH

A © Openstreetitap contributors

i J

4536 4 F =T

Fig 7: Homepage

The homepage shows the most recent temperature, humidity, PM2.5, and CO2 values. The
last pinged location is also indicated by a red dot on the map on the right side of the page.
The map can be zoomed into and moved around using the widgets next to it.

https://city-pollution-app-a4a59953b054.herokuapp.com

3.1.2 Pollution History

City Pollution Monitoring

Pollution History

2500

400 430 500 530 600 400 430 500 530 600

Fig 8: Pollution History

The pollution history page shows two graphs. The first graph displays the variation of
temperature, humidity, and PM2.5 concentration with time, as measured on the last day on
which data was collected. The second graph displays the variation of CO2 concentration
over the same time period.

3.1.3 Heatmap

City Pollution Monitoring

Home Map Pollution History About Us

45433 =

treet
Public Schobl

45.432 =

& e

4 < €auspieil O %
: "% i
1% N % -
“a

£
15431 - .)

J ™7 by - i

! 2
i 3
B 2 /”7: -
5 ot 2) 0.

1 o+ ; i f *

45.43 £ \ 5w
\ o

i o

J X P LR =] o

i \

L
- o
o
1 et o
45429 oy o
=C -3
P 1L
2 [2N (9
o
oo c,“ce e
ext z°° & 1z @
Lo f] 2= o 7
45.428 ¢ it &=
4 - o sy O gt
o + i %,
[} of
{8 2 e
i “ 9 S n
45427 Pt o -
. : z
piy T, % " Pl LY
S s %
) RS o %
o % e o
o 5, 0
f f 1 T
7569 75688 -75.686 -75.684 -75682

Fig 9: Heatmap

The ‘Map’ tab takes you to a page displaying a heatmap of CO2 concentration as measured
over the last day on which the data was collected. The colors on the heatmap indicate the
following concentration levels:

Green - Less than 1000 ppm

Dark orange - Between 1000 to 2000 ppm
Orange - Between 2000 to 5000 ppm
OrangeRed - Between 5000 to 40000 ppm
Red - Higher than 40000 ppm

4 'Troubleshooting & Support

This section lists all the error messages that can be displayed on the module or the web
application during device operation.

4.1 Error Messages or Behaviors

e WiFi not connected/no data sent to the server: This is displayed as an icon on the top
right of the LCD screen on the device. Connect the device to a WiFi network or mobile
hotspot.

e GPS not connected (go outside): This error is displayed when the device does not have a
clear view of the sky. Pollution data is still collected and sent to the server when this
occurs, however, the location data will default to (0,0). This will cause the location on the
web page to not be displayed.

4.2 Maintenance

The device is designed to operate automatically and does not require any external
maintenance from the user side. Concerning firmware updates for the device, connecting to wifi
or a mobile device would allow the web application to automatically upload required firmware
updates to the device.

4.3 Support
As creators of the device, we would be happy to provide product support on the following
chosen topics. Please send emails with a brief description of the issue experienced or

support requested.

e Mechanical Support

o Max Shui mshui036@uottawa.ca

o Myron Soares msoar086@uottawa.ca
e Electrical Support

© Adrian [annantuono aiann079@uottawa.ca

o Max Shui mshui036@uottawa.ca
e Software Support

o0 Adrian Iannantuono aiann079@uottawa.ca

o Drishya Suresh dsure069@uottawa.ca
e Administrative Support

o Tarin Sultana tsult029@uottawa.ca

5 Product Documentation

This section deals with in-depth technical aspects of the product, including design
considerations and materials used.

5.1 Mechanical design

The ultimate goal for the mechanical design of our system was to create the most functional,
compact, and rugged housing possible to package our selected hardware. Our housings were
3D printed from PLA plastic for economical and fast prototyping. The basic concept of the
enclosure revolves around the use of a sealed internal air channel for gathering sensor data.
This air channel is entirely isolated from the rest of the internal volume of the housing,
ensuring ingress protection from the elements. Only sensor inputs pull air from this channel,
which is ventilated by a waterproof fan on one side to generate positive pressure, ensuring
consistent airflow regardless of exterior atmospheric conditions. All sensor, screen, button,
and wire passthrough openings are sealed, and both the top lid assembly and charging port
lid are protected by an O-ring. The development of the overall assembly has been an
iterative process, with improvements based on lessons learned from assembling and testing
the previous prototype models. This final refinement represents a cumulation of knowledge
from our entire course of development, learning which would not have been possible
without hands-on experience.

Fig 10: Exploded view of Prototype II

10

There were many improvements made for ease of assembly. The GPS antenna was initially
oriented to face the y-axis while in operation. Mounting it facing the z-axis of orientation
improved ease of assembly and demonstrated better connectivity while retaining line of
sight for signal acquisition. The location and orientation of the microprocessor was adjusted
for better packaging as well as easier USB access for software updates and maintenance.
General component tolerances were evolved to allow for easier fitting and more error on
3D-printed parts.

To further improve ingress protection, an acrylic lens was installed in the lid to preclude any
issues from sealing the screen module directly to the lid. An additional smaller acrylic lens
was implemented to allow viewing of the battery charge indicator on the power board.

seeeweegwwwwss /. Power Board o
\‘\\W E ;

PM2.5
Air Duct

Switch V

Fig 11: Cross-section views showing component placement

With consideration to user ergonomics, a standard VESA (FDMI-MIS-B) hole pattern was
integrated into the housing. Any VESA standard attachment may be mounted for the unit.
This includes a variety of off-the-shelf adjustable ball-type mounts, typical for vehicle
mounting. We have also designed two original mounting solutions for demonstration.
These include a clamp-on mount created for mounting to 1” diameter bicycle handlebars
and a clip-on mount for mounting to a backpack strap or standard MOLLE.

11

Fig 12: VESA mounting solutions

Overall, these modifications over the course of development have resulted in a minor
increase in our product footprint from 47x2.9”x1.5” to 4.2”x3”x1.5”, which is an 8.6%
increase in volume size from the initial prototype. We do not foresee this increase in size
having any noticeable impact on the end user's ergonomics and experience with our unit.

Fig 13: Comparison of Prototype II size with Iphone™ 14

12

5.2 Electrical design

The device consists of 7 main hardware components. The components are an ESP8266
development board with built-in WiFi, a temperature, humidity, and CO, sensor, an OLED
screen, a GPS sensor, a PM2.5 sensor, a battery, and a battery management module. The
exact models of these components are mentioned in the bill of materials in Section 5.4.
These components were all tested on a breadboard in previous prototypes and wired
according to their specifications. The components are connected to each other and the
Arduino board via an I°C data bus. This wired communication protocol allows for the
connection of multiple devices with shared data and clock lines for communication and data
acquisition with the microcontroller. After they were placed on a breadboard and confirmed

to be working we transferred the electronics into the mechanical enclosure to ensure correct
fit.

The following figures show the schematic used in our device and the final assembly using
the schematic.

OLED
NDJ |27 128x64

T“\‘

Fig 14: Final schematic

13

5.3 Software design

5.3.1 Arduino Code

To develop the device we used the Arduino bootloader running on the ESP8266 WiFi
development board. This allows us to utilize existing modules for connecting to WiFi and
servers as well as collect data from the sensors using the Arduino interface.

=) croincering Desian GNG5140 / Ackian-Test 8 Q Type (7 to search > [+ -][e](n](a

<> Code (lIssues 11 Pullrequests (® Actions [Projects @ Security |~ Insights

L. Adrian-Test Private @Watch 0 v | ¥ Fok 0 v Y7 Star 0 o~
Final-Prototype ~ ¥ 4branches © 0tags Go to file Add file ~ About
No description, website, or topics provided.
This branch is 4 commits ahead of main. 1% Contribute +
0 Readme
A- Activity
@ adrianiannantuono Update testino 476d9c9 6 hours ago) 6 commits ¢ Ostars
® 0 watching
W test Update testino 6 hours ago
% 0 forks
[.DS_Store GPS Module working. Data uploaded to server in JSON format last week
[.gitignore Connects to wifi, OLED screen works, reads sensor temp/humidity and .. last month
Releases
Y READMEmd Initial commit last month
No releases published
Create a new release
README.md Va

Packages

Adrian-Test

No packages published
Publish your first package

Languages

® C++988% O C12%

Fig 16: GitHub branch created for final prototype

14

The code written for the Arduino can be found in the Appendix, under the heading “Arduino
code”.

The two constants ‘WIFI NOT CONNECTED’ and ‘WIFI CONNECTED’ are used to
display connection symbols on the OLED screen. ‘GPS NOT CONNECTED’ and
‘GPS_CONNECTED’ constants have been added to display symbols for the status of the
GPS sensor. A separate file ‘secrets.h’ is maintained to store the SSID and password
required to connect to the WiFi network. The ‘remote host’ variable stores the url for our
web server, which is pinged every 10 seconds with a POST request containing the collected
data in JSON format.

In the setup loop, we first initialize the sensor pins and define the parameters required for
the display. Since the sensors read analog values, we read the values through Serial
communication. We also check if the display is working and connect to the WiFi network.

Separate functions are written to read the data from the CO2 sensor, the PM2.5 sensor, as
well as the GPS module. Finally, the getSensorData() function is used to read and store
values from all the sensors in one line of code. The updateDisplay() function initializes the
display and configures it to display the connection status for WiFi and GPS sensor, battery
percentage, the temperature in Celsius, humidity in percentage, CO, concentration (ppm),
PM2.5 concentration (ug/m?), and last server response time in milliseconds.

The sendData() function has been updated to serialize the collected data - date, time, GPS
coordinates, temperature, humidity, CO2, and PM2.5 concentration levels - into a JSON
object, which is then sent as a HTTP POST request to the ‘save data’ endpoint of our web
server.

5.3.2 Web Server

Our device is integrated with a web server that is used to save the collected data into a
database, as well as display the collected data on a simple web interface. The web server
was created using Python’s flask library which is a light web framework which is used for
creating simple web applications. The database used is MariaDB, which is an open source
database that is generally used in place of MySQL on the Heroku platform.

Figure 17 shows the block diagram for the integration of Arduino with the web server.

15

JSON Post request

Fig 17: Integration of Arduino with web server

The web server is hosted on Heroku, which is a cloud Platform-as-a-Service (PaaS) that is
commonly used to host apps by packaging them in virtual containers called ‘Dynos’. We are
hosting our app using Heroku’s free tier option. Heroku also allows us to set environment
variables so that the database connection strings are not exposed via the code.

= Q Engineering-Design-GNG5140 / city-pollution-app & Q Type () to search > + - |01

<> Code (@ lIssues 1% Pullrequests (® Actions [Projects @ Security [~ Insights &8 Settings

L. city-pollution-app Private OWatch 0 v ¥ Fok 0 v | Y¢ Str 0~
¥ main ~ ¥ 3branches ©O0tags Gotofile Addfile~ About &

Done as part of the course requirements

Your main branch isn't protected q for GNG 5140
Protect this branch X
Protect this branch from force pushing or deletion, or require status checks before merging. Learn more

00 Readme
A Activity
T drishya1998 Merge branch 'main’ of https://github.com/Engineering-Design-GNG5140... - 1defs37 1hourago {® 36 commits % Ostars
0 watchin
W static datatype changes NSl @ Owatching
% Oforks
B templates added heatmap and changed dataprocessing.py functions to db calls 1 hour ago
O gitignore Create .gitignore yesterday
Releases
O Aptfile Create Aptfile yesterday
No releases published
O Procfile Update Procfile yesterday Create a new release
O READMEmd initial commit 2 weeks ago
D apppy added heatmap and changed dataprocessing.py functions to db calls 1 hour ago Packages
[backend.py Merge branch ‘main’ of https://github.com/Engineering-Design-GNG51... 1 hour ago No packages published
Publish your first package
[requirements.txt Database connection fixed yesterday

Fig 18: Github repository created for the web server

The code for the application can be found in the appendix under the heading “Code for web
application”. The database connectivity and database calls are done in the backend.py file.
The database connection is initialized using the initialize conn() function and closed using
the close conn() function. The insert data() function is used to insert values into the
database whenever the Arduino pings the server. This function also saves the collected data
into a csv file for further use.

16

The get latest() function is used to retrieve the latest value in the database whenever the
web application is initialized. These values are then displayed on the home screen as shown
in figure 19.

City Pollution Monitoring

Home ‘| Map Pollution Histery About Us

Temperature Humidity

8.65 44.51

co2 (ppm) PM2.5 (pg/m3)

2825.00 2.00 153]

Location

<«

Fig 19: Home screen of web application

The get heatmap points() function makes a database call to retrieve the values of longitude,
latitude, and CO2 concentration over the last day. This data is then used to display a
heatmap on the “Map” tab of the web application. The colors vary from green to orange to
red depending on the concentration of CO2 in that location. The following logic was used to
assign the colors on the heatmap:

Green - Less than 1000 ppm

Dark orange - Between 1000 to 2000 ppm
Orange - Between 2000 to 5000 ppm
OrangeRed - Between 5000 to 40000 ppm
Red - Higher than 40000 ppm

17

City Pollution Monitoring

Home Map Pollution History About Us
3 o N =
\ e e o
) i iy
asazs 10 i‘a“-‘\ Beausejour Parc
; bhmunii
E . W Community Ecole élémentaire
4 catholique
lowert L;L’:IH - Sainte-
! : Anne |
York Street
45.432 4 et Public School
] 9] o o
€ ¢ ol
T b e %, ot 4, e
E u s [N_,_D Paﬁs:}lello“ (;%
1y 1, L] %(9 w
45.431 R S N
T % b we
1 o -
% % 2
B G
5 «
e 2 \ i %
p* L \ i o W
4 " b -l
- i t e
45.43 4o \ "
] \ &
% G A\ \B
"
X . %\“é
1 e P et
o i
45.429 S o
1 p 1- e @) -
" o
i X Gte\ i
‘>‘-@a ‘b"": > % s
] e 2 o
oo ° W p B T e
45.428 ! f 2 T Z
A e = b H
| u eI W) a«
g% 2 B
4 ot o =,
- E‘ -
n of -+
| 5
" 's)
\ < o
d \ = n
45.427 + \ D ar i .
Jaas e) E Qe » on %
i) -I- A g\.‘e %o
s SR i
1 L) F“zp B \:l\\“‘ 1":
S o © Open
,. —— ———— T
-75.69 -75.688 -75.686 —-75.684 -75.682

Fig 20: Heatmap showing CO2 concentration across Downtown Ottawa

The get variation() function is used to retrieve the CO2, PM2.5, temperature, and humidity
values over the past day to display it as a graph on the web application on the “Pollution

History” tab.

18

City Pollution Monitoring

Home || Map

Variation CO2 variation

Pollution History

About Us |

1 &]

— PM2 5 concentration — C02 concentration
— Temperature |

= Humidity

varfation
varfation

10000

0

T T T T T T T T
40 45 50 55 20:00 40 45 50

time time

Fig 21: Variation of pollutants, temperature, and humidity

modify_coordinates() is a helper function that is used to format the data received from the
Arduino. The GPS module sends the latitude and longitude coordinates by marking them
with a N/S/E/W suffix, while the general format for latitude and longitude is by using a +/-
prefix.

The code in app.py is used to set up the Flask application. There are two endpoints - one for
the web application, and one for the webserver to store the data from Arduino into the

database.

The UI for the web application has been kept very simple so that the user needs to only have
minimal interaction with the module and application to view or collect data.

19

<

5.4 BOM (Bill of Materials)

The bill of materials for all components used in our device is given below:

Item Description Qty Price Subtotal |URL
https://www.amazon.ca/ap/
Battery, 103665 3.7V 3000mAh LiPo 1] $29.00] $29.00|productBORP9SHEMH
1/2" Mount, Latching, llluminated, hitos://www.amazon.caldp/
Button 3A, IP67 1 $8.00 $8.00 | product/BOBNQBENTV
Cable, Hookup Wire 26 gauge, per inch 40 $0.07 $2.80
https://www.adafruit.com/pr
Cable, Stemma QT 4-pin JST 3 $1.31 $3.93 | oductia210
https://www.amazon.ca/ap/
Charging Module Daoki 5V, 2A, USB-A/C 1 $3.74 $3.74 | product/B091TPZH13
https://www.adafruit.com/pr
Display, OLED, 0.96" GME12864-11 1 $24.15 $24.15 | oduct/326
hitps://www.amazon.ca/gp/
Fan, 25mm Ball bearing, 2.45 cfm, 5V, 0.15A 1 $6.26 $6.26 | product/BOIKFVIK23
Housing, Base 3D Printed, PLA, per gram 101 $0.03 $3.03
Housing, Fan Grille 3D Printed, PLA, per gram 1 $0.03 $0.03
Housing, Lid 3D Printed, PLA, per gram 15 $0.03 $0.45
Housing, Port Cover 3D Printed, PLA, per gram 1 $0.03 $0.03
https://www.amazon.ca/gp/
Inserts, Heat Set, M2 x 3mm |Brass 37 $0.10 $3.70 | product/BO7NYYLQBJ
Lens, Battery Indicator Acrylic, per sq in 0.19 $0.50 $0.10
Lens, Screen Acrylic, per sq in 0.84 $0.50 $0.42
Microcontroller, NodeMCU https://www.pcboard.ca/nod
Amica With WiFi 1 $7.67 $7.67 |emcu-v3-ch340
https://www.amazon.ca/gp/
Oring Strip, 1/16" Buna-N, 70A Durometer, per inch 15 $0.09 $1.31 | product/BO0QVBENE4
Screw, Pan Head, M2 x 16mm |Pan Head, Stainless 4 $0.05 $0.21 | product/BO7GRMSEWM/
https://www.amazon.ca/gp/
Screw, Pan Head, M2 x 4mm |Pan Head, Stainless 29 $0.05 $1.54 | product/BO7GRMSEWM/
Adafruit SCD-41, True CO2, . frui
Sensor, CO2 Temperature, Humidity 1 $68.93 $68.93 | oduct/5190
Adafruit PA1010D, GPS/GNSS, 12C) i
Sensor, GPS and UART 1 $41.33 $41.33 | oduct/ia415
httos://www.adafruit.com/pr
Sensor, PM2.5 Adafruit PMSA003I, Particulate 1 $62.03 $62.03 | oduct/4632
Total
(CAD) $268.66

Table 2: Bill of Materials (BOM)

20

https://www.amazon.ca/gp/product/B0BP99H5MH
https://www.amazon.ca/gp/product/B0BP99H5MH
https://www.amazon.ca/gp/product/B0BNQ6FNTV
https://www.amazon.ca/gp/product/B0BNQ6FNTV
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.amazon.ca/gp/product/B091TPZH13
https://www.amazon.ca/gp/product/B091TPZH13
https://www.adafruit.com/product/326
https://www.adafruit.com/product/326
https://www.amazon.ca/gp/product/B09KFV9K23
https://www.amazon.ca/gp/product/B09KFV9K23
https://www.amazon.ca/gp/product/B07NYYLQBJ
https://www.amazon.ca/gp/product/B07NYYLQBJ
https://www.pcboard.ca/nodemcu-v3-ch340
https://www.pcboard.ca/nodemcu-v3-ch340
https://www.amazon.ca/gp/product/B00QVB6NE4
https://www.amazon.ca/gp/product/B00QVB6NE4
https://www.amazon.ca/gp/product/B07GRMS6WM/
https://www.amazon.ca/gp/product/B07GRMS6WM/
https://www.amazon.ca/gp/product/B07GRMS6WM/
https://www.amazon.ca/gp/product/B07GRMS6WM/
https://www.adafruit.com/product/5190
https://www.adafruit.com/product/5190
https://www.adafruit.com/product/4415
https://www.adafruit.com/product/4415
https://www.adafruit.com/product/4632
https://www.adafruit.com/product/4632

5.4.1 Equipment list
Physical Tools:

3D Printers - Ultimaker 2+, FLSUN V400
Screwdriver

Needlenose Pliers

Wire Strippers

Soldering Iron

Heat Gun

Epoxy Adhesive

Rubber Adhesive

Software Tools:

OnShape

Cura

Arduino IDE

Visual Studio Code/any python editor
Heroku platform

5.5 Testing & Validation
5.5.1 Physical Prototype

The final prototype of the pollution monitoring device collects data from the
temperature/humidity/CO,, PM2.5 and GPS sensors and displays that information in
real-time on the device's OLED screen. The device includes a 3000 mAh LiPo battery which
allows for the device to operate for a minimum of 6 hours without being connected to
external power. This allows the device to be extremely portable. The device can also output
power through its USB-A port which allows it to charge devices and operate as an external
battery bank. Operation of the device is as simple as pushing the power button to turn the
device on. The power button lights up to show that the device is running as seen in Figure
22. When the device is off this button does not light up to save power.

21

Fig 22: Power button ON

Once the device is turned on it will try to acquire a satellite signal from the GPS module as
well as connect to WiFi. Once the device connects to WiFi, it will send current sensor
readout data every 10s to the external server which stores the data for the front-end
application to use. It does this by sending a POST request to an endpoint on the server
which then processes the request and stores the data. The device also displays the WiFi and
GPS status in the top right corner. The device displays and stores the current time and date
once it connects to WiFi so that each measurement can be timestamped. The device also
displays the status of the POST request along with the time elapsed from the last time the
device sent data to the server. The following endpoint is used on the server:
http://city-pollution-app-a4a59953b054.herokuapp.com/save_data

A 200 response means that the server received the data and stored it in the database. The
server and SQL database are running on the Heroku web hosting platform as seen in Figure

& salesforce Platform
HEROKU Jump to Favorites, Apps. Pipelines, Spaces.
@) personal ¢ > @ city-poliution-app Y | openapp More ¢
GitHub €) Engineering-Design-GNG5140/city-pol Lution-app (EISEED
Overview Resources Deploy ~ Metrics Activity Access Settings
@ Getacomplete lization of your app in a based delivery with B Heroku Pipelines.
Installed add-ons (XTI Configure Add-ons @ Latest activity All Activity @
JawsDB Maria (3 Kitefin Shared) aiannantuono@me.com: Deployed 44d18975
jawsdb-maria-animate-13291 0

Yesterday at 7:53 PM - v42 - Compare diff

o@me.com: Build succeeded

o
Dyno formation Confiue Dy © ot 7:53 PA -View build log
This a ng eco dy)
s 3pp Is Using eco dynos ® aiannantuono@me.com: Deployed 7f1f4e34
2. Yesterday at 6:23 PM - v41 - Compare diff
web gunicorn app:app ~-preload oN
2 aiannantuono@me.com: Build succeeded
(] Vesterday at 6:22 PM - View build log
Collaborator activity @ Manage Access @
@ m: Deployed 3de1d917
nnnnnnn tuono@me.com 3 26 deploys . at 5:52 PM - v40 - Compare diff
2 aiannantuono@me.com: Build succeeded
(] Yesterday at 5:51 PM - View build log

Fig 23: Heroku web app hosting

22

http://city-pollution-app-a4a59953b054.herokuapp.com/save_data

Fig 24: Device operating outside

Charging the device is done through the USB-C charging port on the side of the device. The
device can also provide output power (max 2A of current) via a separate USB-A port
pictured in Figure 25 below.

Fig 25: Device I/O

The battery charging module also includes LEDs that show the current battery percentage as
well as blink to indicate charging or discharging through its battery bank feature. The device
has a battery capacity of 3000 mAh so it can operate as a 3000 mAh external battery bank as
seen in Figure 26 below. The device can output power while it is on or off so the user can
choose when they would like to collect pollution data or just use it as a battery bank.

23

Fig 27: Device internal battery being charged

Fig 28: Battery Level/Charge/Discharge Indicator

24

5.5.2 Testing Process

Testing of our device was done by sending POST requests from the device to the server
using JSON format. The server is hosted on Heroku and accepts POST requests at the

following endpoint:

http://city-pollution-app-a4a59953b054.herokuapp.com/save_data

Figure 29 shows the POST request returning with a 200 OK code meaning that the request
was processed and the data is stored in the SQL server. There is also a message returned

indicating successful save of the data.

B save -

w ity-pollution-app-a4a59953b054. _data
POST v http://city-poll pp-a4a59953b054.herokuapp.com/save_data
Params Authorization ~ Headers (8) ~ Bodye Pre-requestScript Tests Settings
none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON v
1
2 "date_measured": "10-12-2023",
3 "time_measured": "07:43:00",
4 "latitude": "45.422448N",

"longitude":
"co2": "11.

"75.631427W",
"temperatu

6

7

8 "humidity":
9 "pm25": "26"
0

Body Cookies Headers (9) Test Results

Pretty ~ Raw Preview Visualize HIML v

1 Save Success!

Fig 29: Example POST request sent to server

@ status: 200 OK Time: 748 ms Size: 688 B

V4 <>
@:
Cookies
Beautify
@O Q

Figure 30 below shows the data contained in the SQL server after testing the device by

walking around the city.

25

http://city-pollution-app-a4a59953b054.herokuapp.com/save_data

bytw6yab8kiwcygl — Pollution Monitoring

€ zricsfovzpxh060r Show All #

id DateMeasured

TimeMeasured | Latitude Longitude mperature | Humidity 'PM25

zricsfovzpxh060r
PollutionData 709 2023-11-29 :45: 0.0000000 0.0000000 1862.00 13.25 i 6.00
710 2023-11-29 : 0.0000000 0.0000000 4256.00 1274 K 5.00
711 2023-11-29 i 0.0000000 0.0000000 17252.00 1246 K 2.00
712 2023-11-29 :46: 45.4296074 -75.6817169 24854.00 12.36 . 2.00
713 2023-11-29 :46: 454296074 -75.6817093 17582.00 12.17 X 4.00
714 2023-11-29 I 45.4296036 -75.6817093 17582.00 12.17 X 1.00
715 2023-11-29 B 454295959 -75.6817093 17582.00 12.17 X 0.00
716 2023-11-29 454296036 -75.6817169 17582.00 12.17 X 0.00
717 2023-11-29 :46: 454296036 -75.6817245 12731.00 11.36 . 0.00
718 2023-11-29 R 454295959 -75.6817703 12731.00 11.36 . 0.00
719 2023-11-29 : 454296036 -75.6818314 12731.00 11.36 . 5.00
720 2023-11-29 454296112 -75.6819000 13842.00 10.65 X 2.00
721 2023-11-29 :47: 454296303 -75.6819611 13842.00 10.65 X 1.00
722 2023-11-29 B 454296722 -75.6819611 14578.00 10.52 . 0.00
723 2023-11-29 : 454297104 -75.6820755 14578.00 10.52 . 1.00
2023-11-29 454297485 -75.6821060 14578.00 10.52 . 2.00
2023-11-29 :48: 454297905 -75.6821365 9719.00 10.33 . 3.00
2023-11-29 i 454298134 -75.6821671 9719.00 10.33 . 1.00
2023-11-29 i 454298439 -75.6822357 9719.00 10.33 . 1.00
2023-11-29 :48: 454298820 -75.6822739 5340.00 10.18 X 1.00
2023-11-29 454299355 -75.6823502 5340.00 10.18 . 1.00
2023-11-29 B 454299660 -75.6824036 4580.00 10.07 . 1.00
2023-11-29 B 454299850 -75.6824493 5039.00 10.07 . 0.00
2023-11-29 :49: 454299889 -75.6824493 5344.00 10.06
2023-11-29 454301643 -75.6843872 5344.00 10.06
2023-11-29 n 454302063 -75.6844101 5344.00 10.06
2023-11-29 ! 454302292 -75.6844330 493700 10.10
2023-11-29 :50: 454302673 -75.6844864 493700 10.10
2023-11-29 454303360 -75.6845169 493700 10.10
2023-11-29 E 454303856 -75.6845474 493700 10.10
2023-11-29 i 454304352 -75.6845856 4665.00 10.17
2023-11-29 :51: 454304619 -75.6846161 241200 10.17
2023-11-29 45.4305000 -75.6846695 2956.00 10.17
2023-11-29 B 45.4305420 -75.6846924 3319.00 10.21
2023-11-29 B 454305496 -75.6847076 3319.00 10.21
2023-11-29 454305496 -75.6847229 3319.00 10.21
2023-11-29 45.4305649 -75.6847229 3630.00 10.06
2023-11-29 n 45.4305763 -75.6847458 3630.00 10.06
2023-11-29 X 45.4305725 -75.6847458 3630.00 10.06
2023-11-29 B 454305725 -75.6847458 384000 9.94

Showing 100 rows (0 to 100)

Fig 30: SQL server containing data

The following images show the device operating under different test scenarios.

Fig 31: Device Connected to Internet and GPS

26

£ T 4

e O

Fig 33: Device connected to the Internet but not GPS

In addition to these tests, we also performed an ingress protection test by holding the device under
a running tap. It was observed that the device was fully functional despite being underwater.

Once we completed the electrical connection we placed a multimeter in series with the battery
module to see the amount of current that the device draws when it is on. From our tests, it can be
seen that the device uses around 0.5A of power but that number fluctuates a lot due to the amount
of sensors and the fan connected to the device. Using 0.5A as a worst-case current draw and our
battery of 3000 mAbh, it can be calculated that the device will last a minimum of 6 hours collecting
pollution data with no external power.

27

Fig 34: Device power consumption test

The web application was tested by sending POST requests using the Postman application
and checking the response, as shown previously in Figure 29. It was also observed that the
pollutant and location values on the home screen are updated every 10 seconds with the

latest values. This refresh can also be observed by viewing the application logs on Heroku
as seen in Figure 35.

O Personal ¢ > . city-pollution-app ¢

GitHub () Engineering-Design-GNG5149/city-pollution-app

Overview Resources Deploy Metrics Activity Access Settings

Application Logs

74.116.21./3" dyno=web.l connect=Ums service=3Ams status=2UY bytes=/1/3 protocol=https
1-30T03:03:36.983991+00:0@ app[web.1]:
24a59953b@54 . herokuapp . com/”

10.1.23.78 - - [30/Nov/2023:03:03:36 +0008] "GET /static/main.css HTTP/1.1"
dows NT 10.0; Win6d; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36 OPR/104.0.0.0"

at=info method=GET path="/static/main.css” host=city-pollution-app-ada59953b@54. herokuapp.com request_id=F5ce5191-ffca-461c-
eb.1 connect=0ms service=lms status=304 bytes=214 protocol=https

er]: at=info method=GET path="/" host=city-pollution-app-ada59953b@54.herokuapp.con request_id=ebebeldd-cedb-4595-8571-eba6db67bdf5
ms service=34ms status=200 bytes=7173 protocol=https

304 @ "https://city-pollution-app-

-11-30T03:03

194840+00:6@ app[web.1]: 16.1.23.78 - - [38/Nov/2023:03:03:47 +0000] "GET / HTTP/1.1" 200 7018 “https://city-pollution-app-a4a59953b@54. herokuapp.com/”
“"Mozilla/5.@ (Windows NT 10.0; Win6d; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36 OPR/104.0.0.0"
2023-11-30T03:03:47.255414+00:00 app[web.1]: 10.1.23.78 - - [30/Nov/2023:03:03:47 +0000] "GET /static/main.css HTTP/1.1" 364 @ "https://city-pollution-app-

54559953b654.hsrokuapp.(om/‘ dows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.8.8 Safari/537.36 OPR/194.0.0.0"

at=info method=GET path="/static/main.css” host=city-pollution-app-ada59953b@54. herokuapp.com request_id=ab3c92le-5509-4cba-
eb.1 connect-0ms service-lms status=304 bytes-214 protocol-https

3:03:57.45 er]: at-info method-GET path="/" host=city-pollution-app-ada59953b054.herokuapp.com request_id-11le6eb2a-bc99-4bFI-954 -eedds6884431
74.116.21.73" dyno:weh.l connect=8ms service=3dms status-200 bytes=7173 protocol-https

-11-30T03:03:57.452102+00:00 app[web.1]: 10.1.23.78 - - [38/Nov/2023:03:03:57 +0600] "GET / HTTP/1.1" 200 7018 "https://city-pollution-app-ada59953b854. herokuapp. com/"
"Mozilla/5.@ (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36 OPR/104.0.0.0"

2023-11-30703:03:57.523635+00: 00 app[web.1
24359953054 herokuagg. con/ " "Mozilla/5.0 (i

10.1.23.78 - - [3@/Nov/2023:@3:03:57 +0000] "GET /static/main.css HTTP/1.1" 3@4 @ "https://city-pollution-app-
dows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.9.0.0 Safari/537.36 OPR/104.0.0.0"

at=info method=GET path="/static/main.css" host=city-pollution-app-ada59953b054. herokuapp.com request_id-ald87639-3c21-4e22-
ae8b-@eBAaf3ledcs fud="174.116.21.73" dyno=web.l connect=Oms service=Ims status=304 bytes=214 protocol-https

4 Autoscroll with output

K
-3
>

Fig 35: Application logs on Heroku

28

5.5.3 Target Specs vs Actual Specs

The following table shows the list of target specifications vs actual measured specifications
of our prototype along with test values and comments.

Criteria Target Specification| Actual Specifications | Tested Value and Comments

Final dimensions after all

1. Size 3.57x27x1.25” 42”x3.0"x 1.57 .
adjustments.

2. Weight 100-120g 140g Final weight with hardware.

3.7V 3000 mAh Li-ion, | Determined through necessary

3. Power Source| Sv Micro USB 5V USB Type-C capacity and form factor.

PM2.5, Nitrous

Oxide, Ozone, PM 2.5 Air Quality, CO2,

Sensors have been tested and

4. Sensors Temperature, Temperat.ur‘e, and verified to be working.
1 Humidity
Humidity
5 Sensor Approximate average efficiency
) Up to 95% Approx. 96.5% of sensors based on
accuracy

specifications.

Table 3: Results Comparison
6 Conclusions and Recommendations for Future Work

In the course of this project, we have successfully achieved key milestones within the set
timelines and fulfilled the requirements set by the client. We have verified all intended
functionality; namely the Arduino, OLED screen, pollutant sensors, GPS sensor, as well as
the WiFi connectivity and web application. The device was designed to minimize form factor
making it as compact in size as possible without any compromises. This was done by the
sourcing of miniature components and an efficient packaging design which saved space and
allowed for a great reduction in size.

While we are happy to have met all the development and design goals, there are many

modifications and improvements that could be made to increase the functionality and
usability of the module in future iterations. Some of our suggestions are listed below:

29

Addition of other pollutant sensors: Due to budgetary constraints, we restricted the
pollutant sensors used to just PM2.5 and CO2 sensors. Future iterations of the module can
be integrated with more pollutant sensors such as nitrous oxide, ozone, VOC, etc.

Reduction of module size: When we consider functionality, the device components could
be revised by consolidating the sensor modules, the GPS, and the microprocessor into a
single custom PCB. This would improve functionality in several aspects. It would reduce
wiring between the various components and improve connectivity and manufacturability.
The addition of a custom PCB would not only optimize space in the product but also
improve the product's performance and reliability. Using a surface-mounted
microcontroller with custom embedded C code can lower power consumption as well.

Addition of features on web application: Currently the web application only shows
variation of pollutant levels over the past day, and a heatmap of CO2 levels over the past
day. More customization options can be added where the user can choose the date and time
over which the variation and heatmap can be observed, as well as adding a heatmap option
for PM2.5 concentrations as well.

Sustainable Manufacture: The prototype design is currently being manufactured using an
additive manufacturing technique. The process is FDM 3D printing and utilizes PLA
material. This manufacturing technique is ideal for producing small runs of complex
designs. It is a fast process with great time efficiency for rapid prototyping along with
being easily customizable. However, it is less desirable for mass manufacturing. The
housing could be redesigned to utilize injection molding. In this manufacturing technique,
molten plastic is injected into a mold cavity which then sets and is ejected to deliver the
complete part. This manufacturing technique allows for a higher production rate at
quantity with a greatly reduced cost with high accuracy.

7 Bibliography

1.

3.

https://en.wikipedia.org/wiki/Heroku
https://elements.heroku.com/addons/jawsdb-maria

https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-applicati
on-using-flask-and-python-3

30

https://en.wikipedia.org/wiki/Heroku
https://elements.heroku.com/addons/jawsdb-maria
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3

APPENDICES

8 APPENDIX I: Design Files

This project was redesigned from two previously designed projects as attached in below
MakerRepo files-

1. https://maker m/MohitShah/1649.creating-a-pollution-measuring-sensor-network-for
-ebikes-with-realtime-data-collection-and-data-visualization

2. https://makerepo.com/Daniyal/1667.personal-tracking-ecosystem-group-b

The below link directs you to our project details and design files-

https://makerepo.com/myronsoares/1922.city-pollution-monitoring-gng-5140

31

https://makerepo.com/MohitShah/1649.creating-a-pollution-measuring-sensor-network-for-ebikes-with-realtime-data-collection-and-data-visualization
https://makerepo.com/MohitShah/1649.creating-a-pollution-measuring-sensor-network-for-ebikes-with-realtime-data-collection-and-data-visualization
https://makerepo.com/Daniyal/1667.personal-tracking-ecosystem-group-b
https://makerepo.com/myronsoares/1922.city-pollution-monitoring-gng-5140

9 APPENDIX II: Other Appendices

Arduino Code

8 #include "SparkFun_SCDd4x_Arduino_Library.h
9 #include <Adafruit_GPS.h>
a

1 #include <Mire.h>

11 #include <Arduinclson.h>
12 #include <NTPClient.h>
13 #include <MiFiUdp.h>
14

15 #include "secrets.h"

16

17 const unsigned char WIFI_NOT_COMNECTED [] PROGMEM = {
13 Eoeoeoo0a, BOOGOORAR,
19 Becocaona, BoLoo2000,
28 Eeeaceoda, BoooodBRd,
21 Eoeoeoo0a, BOOGOORAR,
22 Becocaona, BoLoo2000,
23 Booeceoda, Boooa2oa,
24 Eoeoeoo0a, BOOGOORAR,
25 Becocaona, BoLoo2000,
26 Boeeceoal, Bloca2ale,
27 Eeeeellla, Balllleaa,
28 Bealleona, Boolellasd,
29 Beleceedl, Bloca2ale,
38 EGe2RA011, BO1GGAGAG,
31 Bececeloa, Boolodoad,
32 Beedleonl, Blocadoad,
33 E@1200001, BloGea@ad 1;
34

35 const unsigned char WIFI_CONNECTED [] PROGMEM = {
36 EQe0R000A, BOOGGOMAG,
37 Becocaona, BoLoo2000,
38 Eoeeceoda, Boooo2oa,
39 EQe0R000A, BOOGGOMAG,
48 Beaecaona, BOOGO2200 ,
41 Eoeeceoda, Boooo2oa,
42 EQe0R000A, BOOGGOMAG,
43 Beaecaona, BOOGO2200 ,
44 Boeeceonl, Blocadoad,
45 EGeER111a, BO1110040,
45 Bealleoda, BOLE81180,
47 Beleceonl, Bloca2alo,
45 EQe2RE01a, BO1EGGGAG,
49 Beaecaloa, BO2182000,
5@ Beeeceonl, Blocadoad,

un
=

E2eeceeel, Bleceowad };

32

53
54
55
56
57
58
59
&8
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
99

const unsigned char GP5_MNOT_CONMNECTED [] PROGMEM = {
foeseeecd, beoeoe8ad,
Ba2aeeaed, B2EB92Ba6,
E2e000204, BODEO2EQE,
Bleageeed, Beoeallee,
E@loeoaca, Be2elllas,
faeleeecd, Balleeles,
paealeall, Blleeleas,
E@e011104, B1oe01248,
feeleelel, Beoelesas,
B21111818, Be2elesas,
EQe00010a, BO2102848,
poedaleed, EBlaleesas,
EGe010204, BO1E0224E,
faeleeecd, Balleesad,
palageaed, Bloelesas,
Ele00020a, Bloeelaas };

const unsigned char GPS_CONMECTED [] PROGMEM = {
BRgaaoand, boacogeea,
BQoAG0208, BO2COC20E,
Bagaaoacd, boacogeea,
Gaeaapa0a, befceglea,
BaoaEDARa, BO2E11180,
paoaapatd, BE11111ea,
Baeaasall, Bllllieaa,
BAEA11111, B11111888,
628111111, Blllleeaa,
B21111111, B1lll@eaa,
pagaaoatd, Blllegees,
Gaeaapacd, Bllleeeea,
BAEAERARA, Blleogeas,
pagaaoata, Blloogees,
Baoaaoaca, Blacogeaa,
bagaaoana, Blacooess I

#define SCREEMN_WIDTH 128 // OLED display width, in pixels
#define SCREEM_HEIGHT &4 f/ OLED display height, in pixels

33

92 /f Declaration for 5501386 display connected using I2C

o3 #tdefine OLED_RESET -1 // Reset pin

94 #define SCREEN_ADDRESS @x3C

o5 Adafruit_sSD13@6 dizplay(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET):
95

a7 Adafruit_GPS GPS(&Wire);

98

o9 Adafruit_PM25AQI agl = Adafruit_PM25AQI();

188

181 SCdx co2TempHumSensor;

182

183 // Network credentials

124 const char*® ssid = SECRET_S5ID;

185 const char* password = SECRET_PASS;

186

187 String remote_host = "http:/fcity-pollution-app-a4a59953b@54.herokuapp.com/save_data™;
188

189 unsigned long previousMillis = @;

118 unsigned long interval = 3888;

111

112 unsigned long lastTime = @;

113 unsigned long lastPrintTime = @;

114 unsigned long lastSaveTime = B;

115

116 int httpResponselode;

117

118 ff Measurements

119 String date_measured = "9@@08-89-8@"; // YEAR[@8]MONTH[@8]DAY[28]
120 String time_measured = "B8:08@:80"; // HOUR[@8]MINUTE[@8]SECOND[@B]
121 String latitude = "B@.020220";

122 String longitude = "9@.080888";

123 float co2 = 8;

124 float temperature = @;

125 float humidity = 8;

126 float pm25 = @;

127

128 const long wutcOffsetinSeconds = -152848;

129 WiFiUDP ntpUDP;

138 NTPClient timeClient(ntplUDP, "pool.ntp.org”, utcOffsetInSeconds);
131

132 v woid setup() {

133 Serial.begin{115288);

134 Wire.begin();

34

136

154

156

J/ initialize the OLED object
if (!display.begin(5SD13@6_SWITCHCAPVCC, SCREEN_ADDRESS)) {
Sr5erigl.println(F("S5D01386 allocation failed"));

for (;3); // Don't proceed, loop forever

display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.println("Pollution™);
display.println{"Monitoring");
display.println("Device");
display.setTextSize(l);
display.println("Initializing Sensors");

display.display();

Jiserial.println();
J/5erial.print("Connecting to ");
JiSerial.println(ssid);

WiFi.mode(WIFI_STA);

Jiserial.printf("HERE: %d\n", WiFi.localIP());
if (IWiFi.localIP{)} {

WiFi.begin{ssid, password);

if (co2TempHumSensor.begin() == false) {

Jr5erial.println(F("C02 Sensor not detected. Please check wiring. Freezing...

while (true);

if (lagi.begin_I2C()) {
frserial.println("Could not find PM 2.5 sensor! Freezing...");

while (true);

GP5.begin(Bx1@); // The I2C address to use is 8x1@
GPS. sendCommand { PMTK_SET_NMEA_OUTPUT_RMCONLY);
GP5. sendCommand (PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate

timeClient.begin();

delay(3000);

35

"

188 v vold getCo2TempHumData() {

181 if (co2TempHumSensor.readMeasurement()) // readMeasurement will return true when fresh data is available
182 I

183 J/serigl.println();

184

185 Jiserial.print(F("CO2{ppm):"));

186 if (co2TempHumSensor.getCD2() == @) {
187 /f invalid sample

138 return;

189 3

190 co2 = co2TempHumSensor.getC02();

191 J/Serial.print(col);

192

153 J/Serial.print(F("\tTemperature(C):"));
194 temperature = co2TempHumSensor.getTemperature();
195 J/Serial.print(temperature, 1);

196

197 Jrserigl.print(F("\tHumidity (%RH):"));
198 humidity = co2TempHumSensor.getHumidity();
1949 Jiserial.print(humidity, 1);

228

281 Jiserial.println();

2a2 } else {

283 Jiserial.print(".");

284 }

285 3

288

287 v wolid getAQIData() {

288 PM25_AQI_Data data;

289

218@ if (lagi.read(&data)) {

211 return;

212 }

213 /*Serial.print(F("\t\tPM 2.5: "));

214 Serial.print{data.pm25_standard);

215 Serial.printin("");*/

216 pm25 = data.pm25_standard;

36

248
241
242
243
244
245
246
247
248
249
258
251
252
253
254
255
256
257
258
259
268
261
262
263
264
265
266
267
2638
269
27e
271
272
273
274
275

vold get@PSDatal) {
/7 read data from the GPS in the "main loop'
char ¢ = GPS.read();
if (GPS.newNMEAreceived()) {
if (1GPS.parse(GPS.lastMMEA())) /7 this alsoc sets the newNMEAreceived() flag to false

return; // we can fail to parse a sentence in which case we should just wait for another

if (GPS.Fix) {

T else {
latitude = "@@.002080";
longitude = "@8.000000";
/fSerial.print("No Satelites”);

vold getTimefndDate() {
time_t epochTime = timeClient.getEpochTime();
struct tm *ptm = gmtime ((time_t #*)&epochTime);
int currentMonth = ptm-»>tm_mon+1;
int monthDay = ptm->tm_mday;
int currentYear = ptm->tm_year+190a;
date_measured = String{current¥ear) + "-" + String{currentMonth) + "-" + String{monthDay);

time_measured = timeClient.getFormattedTime();

vold getdllSensorDatal) {
getCo2TempHumData() ;
getAQIData();
getGPsDatal);

vold updateDisplay(} {
/f Clear the buffer.
display.clearDisplay();

37

204 /7 Display Text

295 display.setTextsize(l);

295 display.setTextColor{WHITE);

207 if (1GPS.Fix) {

208 display.drawBitmap{112, @, GPS_NOT_COMMECTED, 15, 16, WHITE);
299 Felse {

308 display.drawBitmap{112, @, GPS_COMMECTED, 15, 15, WHITE);
391 }

3@z switch (WiFi.status{)) {

a3 cese WL_COMNMNECTED:

394 display.drawBitmap(59@, @, WIFI_COMMECTED, 15, 16, WHITE);
3@5 display.setCursor(@, 55);

386 display.print{"Uploaded(");

3a7 display.print{httpResponseCode);

388 display.print{"} ");

3@9 display.print{(millis{) - lastTime)/1868, 1);

3@ display.print{"s ago");

311 f*display.printf("Signal Strength (RSSI): %d\n™, WiFi.RSSI())};=*/
312 break;

313 default:

314 display.drawBitmap(5@, @, WIFI_NOT CONNECTED, 16, 16, WHITE);
315 break;

315 }

317

318 display.zetCursor{@, 18);

319 display.print(temperature, 1);

320 display.print("C ");

321 display.print(humidity, 1);

322 display.print("%"};

323 display.println{);

324 display.print("C02:");

325 display.print(co2, @);

326 display.print("ppm"};

327 display.println{"");

328 display.print("PM2.5:");

329 display.print{pm25, @);

338 display.print("ug/m*3"};

331 display.println{®");

332 if (1GPS.Fix) {

333 display.print{"No GPS {Go Qutside)");

334 } else {

38

334

348
341
342
343
344
345
346
347
3438
349
350
351

353
354
355
356
357
358
359

361
362
363
364

366
367
3638
369

371

A

} else {
display.print(String{GP5.latitude/188, 6} + GPS.lat);
display.print{™ "};
display.print{String{GP5.longitude/188, &) + GP5.lon);
¥
if (WiFi.status() == WL_CONMECTED) {
display.println{"");
display.print(date_measured);
display.print(™ "};

display.print({time_measured);

display.println{™");

display.dizplay();

void sendData() {
/f Send an HTTP GET request
if ({millis() - lastTime)} » 1l@@@) {
/{Check WiFi connection status
if(WiFi.status()== WL_CONNECTED){
WiFiClient client;

HTTPClient http;
String serverPath = remote_host + "
http.begin{client, serverPath.c_str{));

// Send HTTP POST reguest
http.addHeader("Content-Type”, "spplicationsjson");

String s;

/f Serialize the 150N data a&s a string
DynamiclsonDocument doc{1824);

39

372
373
374
375
376
377
378
379
380
381
382
383
384
383
386
387
388

doc["date_measured"] = date_measured;

doc["time_measured"] = time_measured;

doc["latitude"] = (String(GPS.latitude/188, &) + GP5.lat);
doc["longitude™] = String(GPS.longitude/18@, &) + GPS.lon;
doc["co2"] = String(col);

doc["temperature”] = String(temperature, 2);
doc["humidity"] = String(humidity, 2);

doc["pm25"] = String{pm25);

serializelson{doc, s);

J/ Send 150N data as string in a POST reguest
httpResponseCode = http.POST(s);

if (httpResponszeCode:@) {
Serial.print("HTTP Response code: "))
Serial.println(httpResponseCode);
/*string payload = http.getstring();
Serial.println{payload);*/
¥
else {
//Serial.print("Error code: ");
//Serial.println(httpResponseCode);
¥
http.end();
H
else {
J/serial.println("WiFi Disconnected”);
H

lastTime = millis();

vold serialPrintData() {
fiserigl.printf("Connection status: %dywn", WiFi.status());
if ({millis() - lastPrintTime} > 588@) {

Serigl.print{date_measured);
Serial.print{",");
Serigl.print{time_measured);
Serial.print{",");
Serigl.print{latitude);
Serial.print{",");

Serigl.print{longitude);

40

414 Serial.print{longitude};

415 Serial.print{",");

416 Serial.print{co2);

417 Serial.print{",");

418 Serial.print{temperature);
419 Serial.print{",");

420 Serial.print{humidity);
421 Serial.print{",");

422 Serial.print{pm25);

423 Serial.println(""};

424 lastPrintTime = millis();
425 }

425 3

427

428 ~ void loop() {

429 timeClient.update();
4308 getAllsensorDatal);

431 getTimedAndDate();

432 sendDatal);

433 updateDisplay();

434 serialPrintDatal);

435 ¥

41

Web Application Code

1. backend.py

initialize conn():

conn = mariadb.connect(

port=33606,
databas .getenv(

)
t mariadb.Error e:
tion(e)

cursor = conn.cursor()
return conn, sor

close_conn{conn):
conn.close()

insert data(conn, sor, data):

row = modify_coordinates(data)

date=row["

humidity=row["hu

pm25=row['p 1
lat = row['latit

42

try:

pm25=row[‘pm25 "]
lat = row['latitude"]
long=row['longitude"]

try:
cursor.execute(” PollutionData (DateMeasured, TimeMeasured, Latitude, Longitude, €02, Temperature,
Humidity, PM25) (2, 2, 2, 2, 2, ?, ?,)", (date, time, lat, long, co2, temp, humidity, pm25))

except mariadb.Error
print(f"Error: {e}")

conn.commit()

csv_Tile path = 'static/output data.csv’
file exists = os.path.exists(csv_file path)
with open(csv_file path, mode="a", newline="") csv_file:
fieldnames=["da ime_measured’, 'latitude’, "longitude’, 'co2’, "temperature’, "humidity’, "pm25']
writer = csv.Dipttinitarieer £ila £inldnamne_£inldnames)
(method) writeheader() -> Any

if not file exi * S
writer.writeheader()
writer.writerow(row)
on(cursor):

" TimeMeasured, €02, PM25, Temperature, Humidity PollutionData DateMeasured
PollutionData)"

humidity = []
pm25 = []

cursor.execute(query)
for item cursor:
time.append(item[@])

co2.append(item[1])
pm25.append(item[2])
temp.append(item[3])
humidity.append{item[4])

return time, co2, pm25, temp, humidity

except mariadb.Error e:

print(f"Error: {e}")

get latest(cursor):

query = C02, PM25, Temperature, Humidity, Latitude, Longitude PollutionData DateMeasured
max (Dat sured) PollutionData) TimeMeasured (MAX(TimeMeasured) PollutionData

\

DateMeasured (MAX (DateMeasured) PollutionData))"

co2 = "0

temp

- "g"

humidity = "e"

pm25

- "p.0"

lat = "0.0"
longi = "0.0"

try:

cursor.execute(query)
for item cursor:
co2 = item[e]
pm25 = item[1]
temp = item[2]
humidity = item[3]
lat = item[4]
longi = item[5]
return co2, pm25, temp, humidity, lat, longi

except mariadb.Error e:

print{(f"Error: {e}")

get _heatmap points(cursor) :|

lat points = []
long_points = []
co2_conc = []

r.execute(query)

item cursor:
lat = item[®].split(" ")[e]
long = item[®].split("” ")[1]
lat_points.append(float(
long_points.append(float(
co2_conc.append(item[1])

modify coordinates(row_data):

lat_string=row_data['latit
long_string=row_data[

row_data[" i "]=1lat_string
row_data["longitude']=long_string
eturn row_data

44

app.py > ..
from flask import Flask, render_template, request, jsonify
from bokeh.plotting import figure, show
from bokeh.embed import components
from bokeh.resources import CDN
from bokeh.layouts import row
import xyzservices.providers Xyz
import backend
import numpy np
import pandas pd

app = Flask(__name)
conn, cursor = backend.initialize conn()

latest_co2, latest_pm25, latest temp, latest humidity, latest lat, latest long = backend.get_ latest(cursor)
backend.close conn(conn)

@app.route('/', methods=["GET', 'POST'])
index():

latest_temp, latest_humidity, latest_pm25, latest_co2, latest_lat, latest long

long_merc, lat_merc = wgs84 to_web mercator(latest_lat, latest_long)

map_plot = figure(x_range=(-8425584.61, -8425784.61), y range=(5678025.27, 5698025.27),
x_axis_type="mercator”, y axis type="mercator")

map_plot.add_tile(xyz.OpenStreetMap.Mapnik)

map_plot.circle(x=long merc,y=lat merc, size=12, fill color="red", fill alpha=0.8)

map_script, map div = components(map plot)

if request.method == "POST':

cdn_js = CDN.js_files[@]

if request.form.get(history') == ‘Pollution History':

conn, cursor = backend.initialize conn()
x,y1, y2, y3, y4 = backend.get_variation(cursor)
backend. close_conn{conn)

x_formatted = pd.to_datetime(pd.Series(x), format='%H:%M:%S").dt.time

pl = figure(x_axis_label="time",
y_axis_label="variation”,
x_axis_type='datetime’,
title="variation™)

figure(x_axis_label="time",

y_axis_label="variation",
x_axis_type='datetime’,
title="c02 variation",
y_range=(560, 20000))

.line{x_formatted, y2, line width=2,

legend label ="PM2.5 concentration”, color="black™)
.line{x_formatted, y3, line width=2,

legend label ="Temperature”, color="red")
.line{x_formatted, y4, line width=2,

legend label ="Humidity"”, color="blue")

.line{x_formatted, y1, line width=2,

legend label ="C02 concentration™, color="green™)

script_pl, div_pl = components(pl)
script p2, div p2 = components(p2)

iv_p2,
cdn_js=cdn_js)

if request.form.get(" t') B
urn render_template("about_us.html")

if request.form.get(") =
conn, cursor initialize conn/()
lat points, long points, co2 conc = 1d.get_heatmap_points(cursor)
b nd.close _conn(conn)

if len(lat_points)>@:
lat avg = sum(lat points)/len(lat points)
long_avg = sum(long points)/len(long points)
long_avg merc, lat avg merc = wgs84 to web mercator(lat avg, long avg)
x1 = long_avg_merc-700.693851693
X2 = long avg merc+70@.69385!
lat_avg merc-100e.14474785
= lat_avg merc+1008.14474785

x1, x2, yl, y2 = -8425584.61, -8425784.61, 5678025.27, 5698025.27

heatmap_plot = figure(x_range=(x1,x2), y_range=(y1,y2),
x_axis_type="m ", y_axis_type="m
heatmap_plot.add_tile OpenStreetMap.Mapnik)

data_src
for i d o
x_pt, y_pt = wgs84a to web_mercator(lat_points[i],long_points[i])
color = " "
co2_level (co2_conc[i])
if co2_level >= 10e0 co2_level <= 2000:
color = nge"
elif co2 level > 2000 co2_level <= 5000:
color =
elif co2 level > 5@00 co2_level <= 406000:
color =

1-append(x_pt)
1. append(y_pt)
"].append(color)

*, fill alpha=e.8, source = data src)

heatmap_script, heatmap div =
rn render_template("ma

heatmap_script=heatmap script,

heatmap_div=heatmap_div,

cdn_js=cdn_js

)

46

elit request.method == 'GET':

return render template("main.html",
temp=latest temp,
humidity=latest humidity,
Co2=latest co2,
PM25=1atest pm25,
map_script=map_script,
map_div=map_div)

return render_template(“main.html”,
temp=latest temp,
humidity=latest humidity,
co2=latest co2,
PM25=1atest pm25,
map_script=map_script,
map_div=map_div)

@app.route(a', methods=["
save data():

:I'I()

.initialize conn()
.insert_data(conn, cursor, data)
.close conn(conn)

update latest(data)

update latest(data):
latest co2, latest pm25, latest temp, latest humidity, latest lat, latest long

latest co2=data['«
latest_temp=data[eratu
latest humidity=data['humidi
latest pm25=data['pm25
latest lat = data[’]
latest long=data['l

wgs84 to web mercator(latitude, longitude):
k = 6378137

X = float(longitude) * (k * np.pi/180.0)
y = np.log(np.tan((9@ + float(latitude)) * np.pi/360.@)) * k
return x,y

47

template, request, jsonify

app = Flask(__name)

conn, cursor = backend.initialize conn()
latest_co2, latest_pm25, latest temp, latest humidity, latest lat, latest_long = ba nd.get_latest(cursor)
close_conn(conn)

@app.route('/", methods=["GET',
index():

latest_temp, latest_humidity, latest_pm25, latest_co2, latest_lat, latest long

long_merc, lat_merc = wgs84 to_web_mercator(latest lat, latest_long)

map_plot = figure(x_range=(-8425584.61, -8425784.61), y range=(5678025.27, 5698025.27),
x_axis_typ Po 7 is ty “me or")

map_plot.add tile(> OpenstreetMap.Mapnik)

map_plot.circle(x=long merc,y=lat merc, size=12, fill color="red", fill alpha=0.8)

map_script, map div = components(map plot)

if request.method ==

cdn_js = CDN.js_files[@]

48

if request.form.get(h

conn, cursor = end.initialize conn()
X,¥1, v2, y3, y4 = b nd.get _variation(cursor)
ckend.close_conn({conn)

x_formatted = pd.to_datetime(pd , format="%H:%M:%S").dt.time

ire(x_axis_labe

x_axis_typ
title
gure(x_axis_labe

legend label ="P
.line{x_formatted,

legend_label ="Temp
.line{x_formatted, y4, line width=2,

legend label ="Humidit

.line{x_formatted, y1, line width=2,
legend label = 3

script_pl, div_pl = components(pl)
script_p2, div_p2 = components(p2)

~eturn render_template("p html",
scripti=script_p1,
divi=div_p1,
script2=script p2,
div2=div p2,
cdn_js=cdn_js)

if request.form.get(" t
rn render_template

if request.form.get(map"')
conm, Ccursc d.initialize conn()
lat points, long points, co2 conc = backend.get heatmap points(cursor)
backend.close_conn(conn)

if len(lat_points)>@:
lat avg = sum(lat points)/len(lat points)
long avg = sum(long points)/len(long points)

long_avg merc, lat avg merc = wgs84 to web mercator(lat avg, long avg)

x1 = long_avg_merc-700.693851693
x2 = long_avg_merc+700.693851693
lat_avg merc-1000.14474785
lat_avg merc+10ee.14474785

x1, x2, yl, y2 = -8425584.61, -8425784.61, 5678025.27, 5698025.27

heatmap_plot = figure(x_range=(x1,x2), y_range=(y1,y2),
x_axis_type="m ", y_axis_type="m
heatmap_plot.add_tile OpenStreetMap.Mapnik)

49

llatip01n
wgs84 to web mercator(lat_points[i],long points[i])

co2_level float(co2_conc[i])

if co2_level 1000 co2_level <= 2000:
color =

elif co2_level > 200 co2_level <= 5000:
color = g

elif co2_level > 500 co2_level <= 46000:
color =

elif co2 level >
color

data src["x'].append(x pt)

data_src['y'].append(y_pt)

data src[’ or'].append(color)

heatmap plot.circle(x="x",) size=12, fill color ', fill alpha-e.8, source = data_src)

heatmap script, heatmap div = components(heatmap plot)

return render_template ml”,
heatmap_script=heatmap script,
heatmap_div=heatmap_div,
cdn_js=cdn_js

)

f request.method == 'GET":

urn render_template(“main.html",
temp=latest temp,
humidity=latest humidity,
C02=latest co2,
PM25=1atest pm25,
map_script=map_script,
map_div=map_div)

urn render_template(” .html",
temp=latest temp,
humidity=latest humidity,
co2=latest co2,
PM25=1atest pm25,
map_script=map_script,
map_div=map_div)

data = request.get json()

conn, cursor = bac initialize conn()

b .insert_data(conn, cursor, data)
end.close conn(conn)

update latest(data)

50

update latest(data):

latest co2, latest pm25, latest temp, latest humidity, latest lat, latest long

latest co2=data[’]
latest temp=data[era
latest humidity=data["hu
latest pm25=data['pm25
latest lat = data['lati
latest long=data['l

wgs84 to web mercator(latitude, longitude):
k = 6378137
x = float(longitude) * (k * np.pi/180.0)
y = np.log(np.tan((9e + float(latitude)) * np.pi/360.8)) * k
return x,y

51

