Deliverable D - Conceptual Design

Chanelle Menard Elisha Khandaker Jonathan Aguilera Rachelle Choi Sorosh Benvidi

February 12, 2023

Table of Contents

Introduction of Fundamental Design and Systems	3
General Design Description	3
Divergent Design	4
Convergent Design	9
Global Designs	9
Decision Matrix	11
Final design and Further Development	11
Conclusion	13
Wrike Snapshot	13
Appendix	13
Other Potential Solutions	13

Introduction of Fundamental Design and Systems

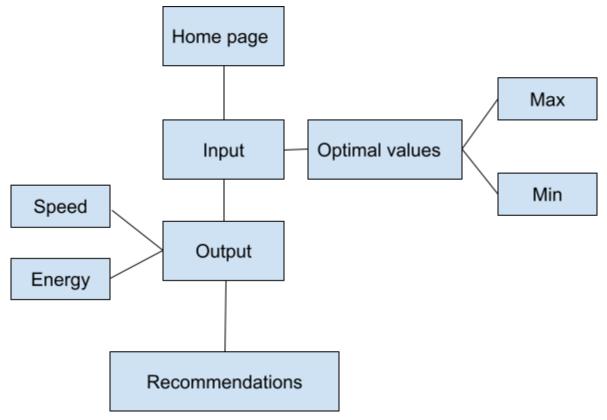
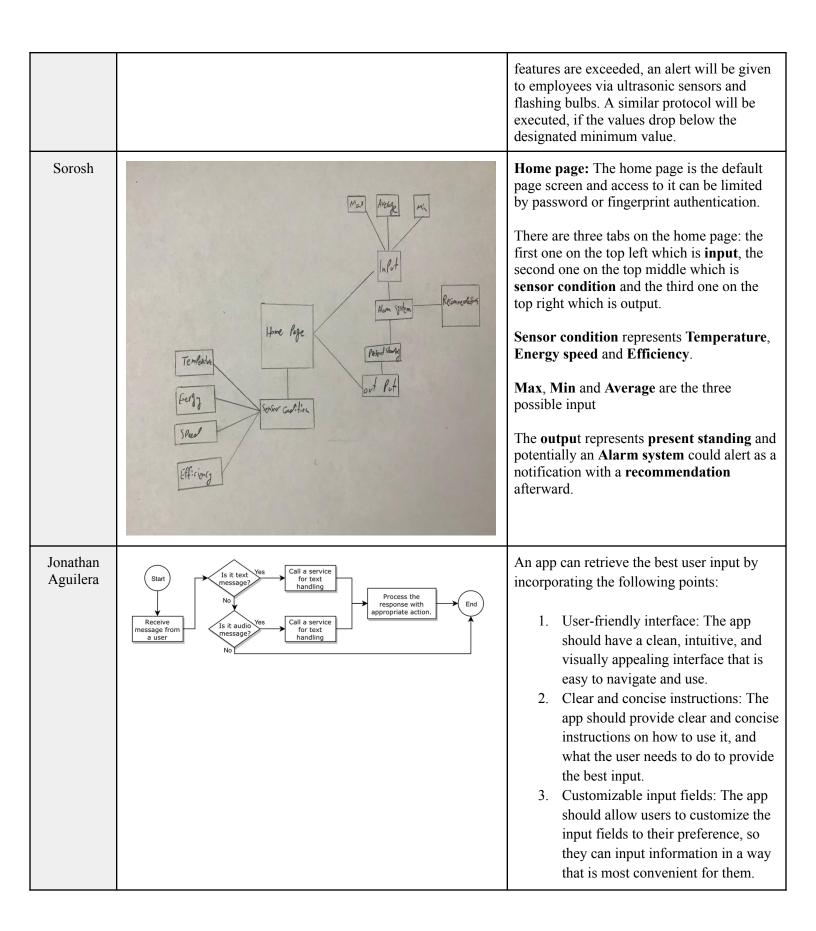
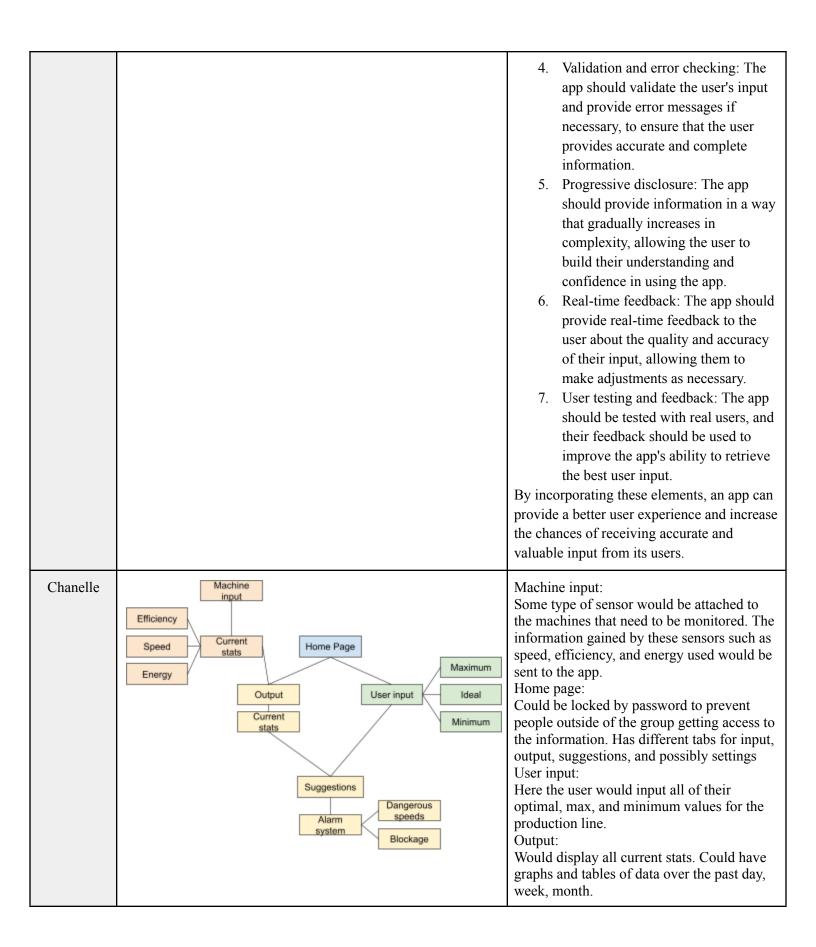
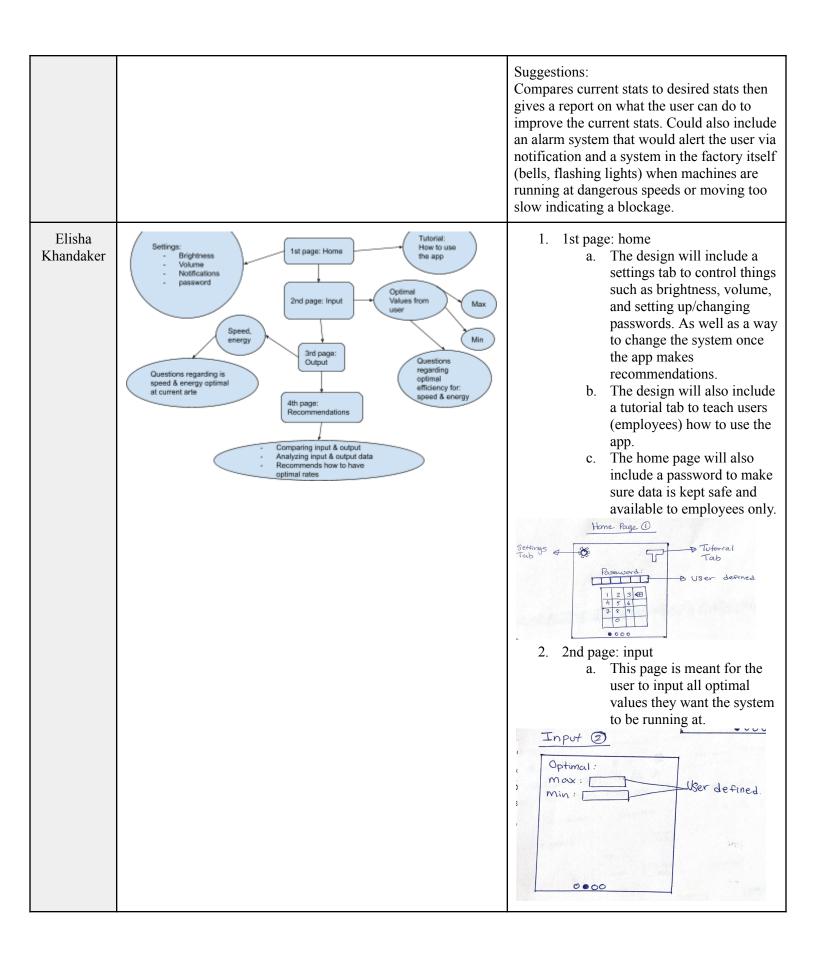


Figure 1. This flow chart represents the fundamental subsystems involved in creating the application which will satisfy the specified customer needs.

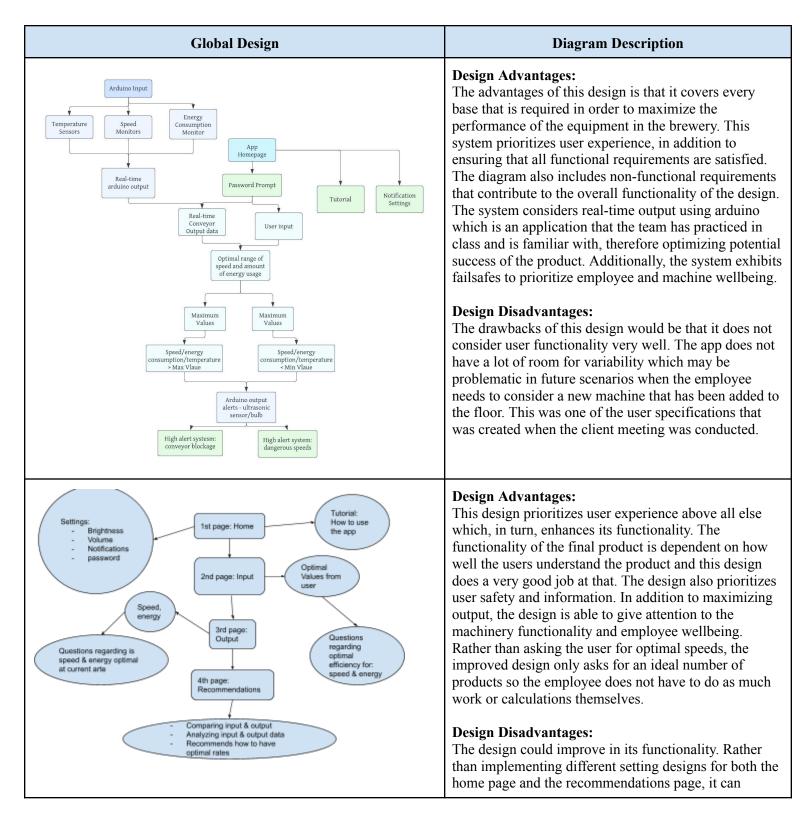

General Design Description

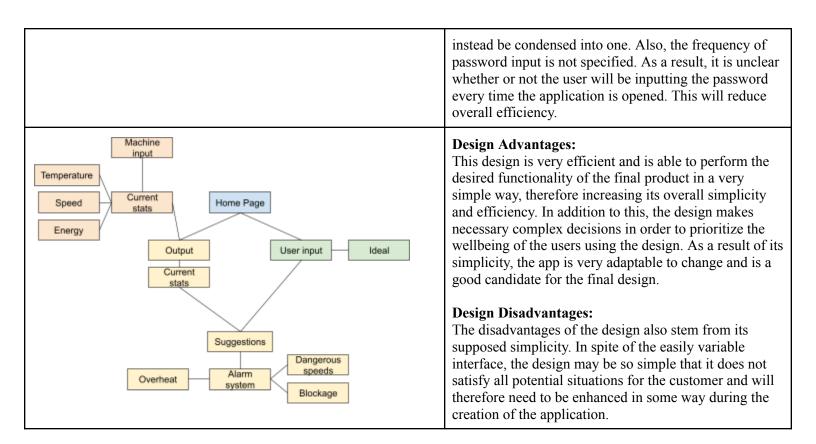

System	Description	
Homepage	The homepage of the application is a default page where the user will begin their experience using the app. This page will exhibit the different pages that the user will be able to access upon opening the app. These headings will include: input and output.	
Input	The input page will prompt the user to input the ideal amount of product they would like to produce within a given amount of time. This input value will then be put through an algorithm that will determine a range of values for both maximum and minimum energy consumption and speed. When the machine operates within this range of values, the employee will receive no alerts. The optimal value range will be determined through verifying how much energy the production line uses, the speed at which normal operations take place, and how much product is produced as a result of this.	
Output	The output section of the app will be able to provide real-time data to the user.	


	This data will primarily consist of information regarding speed and energy consumption.
Recommendations	From the user input, the app will execute an algorithm to decide an optimal range for both speed and energy consumption. This range will be determined by considering safety regulations for employees in addition to minimum operating capacity that must be executed in order for the desired amount of product to be made.

Divergent Design

Member	System Diagram	Description of Diagram
Rachelle	Arduino Input Feergerature Speed Monitor App Homegac Gonveyor User input Optimal range of goned and amount of energy user Speed/energy Speed/energy Speed/energy Orginal range of gonegrature Maximum Values Speed/energy Consumption Arduino output Available Available Available Available Speed/energy Consumption/temperature Available Available	Arduino Input This input is delivered to the app via arduino sensors. These sensors are made to monitor temperature, speed, and energy consumption. Speed is the critical component of the machine's performance that must be optimized. However, for a thorough analysis of the machine's performance, other components also must be monitored. The temperature sensor ensures that the machine is not overheating, potentially risking damage to the design. The energy consumption monitor ensures that the company is not wasting finances on too much energy. Together, these monitors contribute to the real-time conveyor output data that may be accessed through the app. App Homepage The app homepage consists of two subsystems - the real-time conveyor output and user input. The user input is where the user will be prompted to input the amount of product that they would like to create in a given amount of time. Using a combination of the conveyor output data and user input, the app will then be able to deliver the optimal range of speed/temperature/energy consumption. Maximum/Minimum values The optimal range of speed and energy values will consist of minimum and maximum values for speed/temperature/energy consumption. If the maximum values for any of these





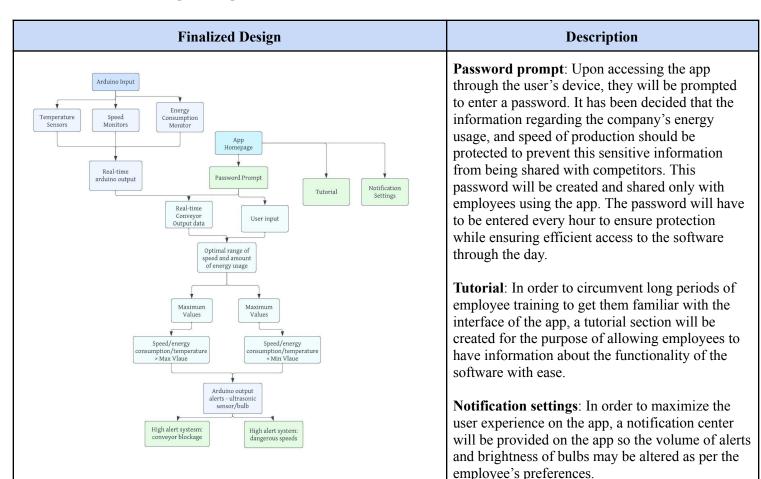
3. 3rd page: output	
a. This page will show the	
current values the system is	
running at	
i. For speed and	
energy	
b. This page will also ask the	
user if the current speed and	
energy is good enough	
before it recommends	
anything to the user.	
Output (3)	
Current speed: System Current energ: defined	
Current energ: defined Is current speed at	
optimal rate?:	
Is current energy at defined.	
optimal rete?:	
0000	
1 Ath na say recommon dations:	
4. 4th page: recommendations:a. This page will analyze the	
input and output data.	
b. This page will calculate	
recommendations based on	
the input and output values.	
c. This page will recommend	
what the settings should be	
changed to so the system is	
running at the most optimal	
rate based on the users	
inputs and systems outputs.	
Recommendations (9)	
(Analyzing dates)	
Calculating decta	
Change setting system	
to: defined.	
0000	

Convergent Design

Global Designs

Decision Matrix

- Rankings are on a scale of 1-5
 - \circ 5 = satisfies the conditions precisely
 - \circ 4 = satisfies the conditions mostly
 - \circ 3 = satisfies the conditions satisfactorily
 - \circ 2 = barely meets the conditions satisfactorily
 - \circ 1 = does not satisfy the conditions


	Functionality	User Experience	Variability	Simplicity	Overall
Design 1	5	4	3	4	8
Design 2	4	5	2	2	6.5
Design 3	3	4	3	2	6

Final design and Further Development

Inherited Subsystems:

• Tutorial tab - Elisha

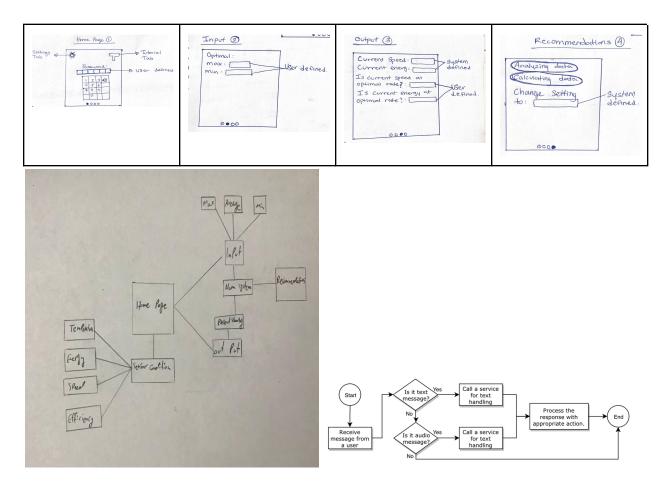
- Notification adjustment Elisha
- Password protected Elisha + Sorosh
- Alarm speed and blockage alert system Chanelle
- Arduino input + outputs Rachelle

Further development

In order for the design to be improved for further development, the design must be made to be more variable, and enhance user experience through the prioritization of user understanding. Adding the tutorial component is a good addition, but this component must be elaborated on during the design process. The tutorial must provide an efficient and comprehensive description of how to use the app in addition. In addition to this, the system itself must become more adaptable to potential changes in machinery that exists on the floor of the brewery. In this instance, the headings must be made more clear so that constant systems never change whereas their subsystems are easily changeable based on what kind of new machine has been implemented. Overall, the design is very promising and satisfies all user specifications to a certain extent. In further developing this design, we are hopeful that the design will meet all design specifications entirely.

Conveyor Blockage Alerts and Dangerous Speeds/Temperatures: In the event that a blockage occurs on the conveyor which may attribute to damaged equipment or harm to an employee, a high alert alarm system will be activated. This system will override volume and brightness preferences set by the employee and instead maximize these settings to prioritize the wellbeing of the employees and the machines. The same alert system will be executed if the conveyor reaches a speed or temperature that is greater than the maximum defined by the software.

Conclusion


Through amalgamating the group's system designs into one finalized design, we were able to encapsulate the required user needs for the project. We have considered the principle functionality of the product and considered other collateral components which will contribute to the overall performance of the product. The user experience, potential risks, and overall purpose of the product were all considered in order to formalize the system diagram. It has been decided that arduino sensors and output devices will be the primary source of inputting and outputting information to the user while the method of analyzing information will be through algorithms that the team will create when creating the project. Overall, we are confident that the final product is a comprehensive product that embodies all user specifications and requirements.

Wrike Snapshot

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=UwZv3481aERIIYtmEkQ7S9jAJaHv vx2h%7CIE2DSNZVHA2DELSTGIYA

Appendix

Other Potential Solutions

