
Project Deliverable H:
Prototype III and Customer Feedback

Ani Preedom
Christy Lau

Paul Shedden
Claire Durand

GNG1103 Project Group 6
March 27, 2022

1

Abstract

On Halifax-class frigates, the Department of National Defence has a need for a robotic arm that
uses inverse kinematics to paint surfaces. The robot must also scan and clean areas to identify
and remove defects. To design the robot, a design process with several steps will be followed.
Thus far, two separate prototypes have been made using feedback from the client and the
professor. At the last stage in the design process, we have finished our final prototype and have
documented the prototyping process in detail.

2

Table of Contents

1.0 Introduction 4

2.0 Detailed Design Drawing and Client Feedback 4

3.0 First Prototypes 8
3.1 Test Results 11

3.1.1 Open/Close End-Effector 11
3.1.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush 11
3.1.3 Solution to Two-Dimensional Inverse Kinematics Problem in Python 11
3.1.4 Usability of User Interface 13
3.1.5 Structural Strength of the End-Effector 14
3.1.6 Compressive Strength of the End-Effector 14

3.2 Analysis of Results 15
3.2.1 Open/Close End-Effector 15
3.2.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush 15
3.2.3 Solution to Three-Dimensional Inverse Kinematics Problem in Python 16
3.2.4 Usability of User Interface 16
3.2.5 Structural Strength of the End-Effector 16
3.2.6 Compressive Strength of the End-Effector 16

4.0 Current Bill of Materials 21

5.0 Conclusion 21

3

1.0 Introduction
The Department of National Defence expressed the need for a robotic arm with three degrees of
freedom to paint areas on Halifax-class frigates. A third prototype testing plan was created based
on the conceptual designs and feedback from the client. Using this third test plan, the final
prototype was created and its progress was recorded.

2.0 Detailed Design Drawing and Client Feedback
Prototype designs for each subsystem were created in deliverable F. These prototypes were
shown to the client and no feedback was given. Physical and more detailed prototypes were then
created based off of previous designs. Figure 1 shows a detailed design diagram of the three
stepper motors for controlling the degrees of freedom of the robotic arm, the ultrasonic sensor to
detect possible individuals or other objects in the area, and the kill switch to turn off the arm in
case of an emergency.

Figure 1. Detailed design diagram of Circuit for Motors and Sensors.

Figure 2 shows the full arm, with the attached 3D printed end effector prototype holding a pencil.

4

Figure 2. Robotic arm with a prototype end effector.

Figure 3 shows a close up of the full end effector prototype holding a pencil, including the spring
mechanics.

Figure 3. Close up of the end effector

5

Figure 4. Detailed Images of User Interface

6

Figure 5. Flowchart of code for the inverse kinematics calculations in Python.

Figure 6. Flowchart of overall software subsystem from the user interface to the Arduino.

7

3.0 First Prototypes
This section provides background information regarding all the prototype tests completed to
date. The details of each test are presented in Table 1.

Table 1. Overview Prototype Test Descriptions

Test
ID

Test
Objective

Description of
Prototype used and

of
Basic Test Method

Summary of Results Date Conducted

S1 Compute
correct values
for angles

Python code
numerically computed
a solution of a 2D
inverse kinematics
problem of which the
analytical solution was
known. Angles
corresponding to a
single point were
solved.

● Correct solution
was obtained with
fast convergence
using Newton’s
method

● The method
diverged when
given a bad initial
guess

S2 Compute
correct values
for angles

Python code
numerically computed
a solution of a 3D
inverse kinematics
problem of which the
analytical solution was
known. Angles
corresponding to a
single point were
solved.

● Correct solution
was obtained with
fast convergence
using Newton’s
method

● The method
diverged when
given a bad initial
guess

E1 Check for
interference
in end
effector
design

Top and bottom parts
of the end effector
were mated together in
onshape using the
cylindrical mate. The
angles were restricted
by assuming what
would be realistic on a
physical model.

● The top part of the
end effector could
be successfully
opened without
hitting/overlapping
the bottom end
effector

2022-03-05

8

E2 Test the
spring
strength in a
clipboard

A paintbrush was
clamped in a clipboard
and held at various
angles and positions
relative to the ground.

● The clipboard
successfully held
the paintbrush in
place without any
slippage or other
movements

2022-03-06

E4 Ensure that
the
end-effector
has enough
compressive
force
structural
integrity to
lift objects
such as a
paint brush,
nozzle, and
camera.

A 3D printed end
effector held various
objects while being
attached to the end of
the arm.

● The end-effector
was able to hold
the mass of a
pencil and
paintbrush
however slippage
did occur

2022-03-11

E5 Test whether
the
end-effector
spring has
enough
compressive
force to hold
a paint brush
and a cell
phone.

Someone’s hand will
open the end-effector
and place a paint brush
and a cell phone in the
clamp and the spring
force will hold the
objects in place once
the person lets go of
the end-effector.

● The end-effector
was able to hold
the mass of a
pencil and cell
phone. Since some
slippage did occur,
there will be
something like anti
slip pads for
furniture to
increase friction
and reduce
slippage.

2022-03-11

E6 -Test whether
the
end-effector
spring has
enough
compressive
force to hold
objects
-Test if the
robot arm can

Use a 3D printed
prototype of the
end-effector to
connect to the robot
and pick up an object.

● This test was
successful, the arm
did not bend or
break under the
weight of the end
effector and
attached object.

● The end effector
can attach to the
arm with no

2022-03-11

9

support the
end-effector
and the object
and that the
end-effector
can connect
to the robot
arm without
any problems

issues.

E7 Test for
slippage on
new end
effector
design

Use the new 3D
printed end effector to
hold and draw with a
paintbrush

● This test was
partially
successful, when
the end effector
held in it’s
intended rigid
position no
slippage occured

2022-03-23

U4 Test if UI is
able to
receive and
store user
input

A number was
inputted into the
height, width and
length sections of the
calibration interface to
ensure that the
numbers could be
recorded in variables
and printed to verify

● The UI was able to
successfully store
and print the
numbers inputted
by the user to the
terminal

2022-03-11

U5 Test UI for
exception
handling
when values
are outside of
range

Multiple tests were
conducted to verify the
exception handling of
the UI:
1. A number outside of
the range was inputted
into the UI
2. Letters were
inputted into the UI
3. No input was also
tested

● The error window
successfully
popped up for the
three tests
completed

2022-03-11

U6 Test file
upload button
on drawing
interface

4 SVG files were
stored in different
locations and uploaded
to the UI and the file
location was printed to

● The files were
accepted by the UI
and python was
able to print the
file paths

2022-03-12

10

the terminal

U7 Test UI’s
ability to
convert SVG
files to
coordinates
and draw an
image
correctly

An SVG file was
uploaded into the UI
and ran to show the
image being drawn
using turtle graphics

● The file was
accepted by the UI
and the image was
successfully drawn
compared to the
original image

2022-03-16

U8 Test the
safety button
on the UI to
ensure
movement
stops

Test U7 was repeated
and the stop button on
the UI was pressed

● The turtle graphics
were able to stop
movement within
0.1 seconds

2022-03-16

H3 Find the
maximum
radius of the
robot’s
workspace.

To find the maximum
radius, motors will be
removed from the
robot and the arm will
be extended manually
and measured using a
measuring tape.

● The maximum
radius of the arm
with the end
effector is around
76.2cm.

2022-03-11

F1 Test if the
python code
can instruct
the motors to
move

Using the robotic arm
with motors connected
to a CNC shield and
Arudino’s Firmata,
and python’s
Pyfirmata libraries, the
arm was instructed to
move in the
x-direction a total of
20 steps

● The robot was able
to move in the
x-direction

2022-03-23

F2 Test if the
robot can
move in a
straight line

Using the robotic arm
with motors connected
to a CNC shield and
Arudino’s Firmata,
and python’s
Pyfirmata libraries, the
arm was instructed to
move from one point
to another

● All parts of the
arm were able to
move to form the
motion of drawing
a straight line

2022-03-23

11

3.1 Test Results

This section outlines some background information for each test and presents the results from
each prototype test.
3.2.1 Open/Close End-Effector

Figure 7. End effector in closed position Figure 8. End effector in opened position
The purpose of this test is to check for any irregularities or overlaps when the end effector is in
its open and closed positions.
3.2.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush

Figure 9. Clipboard and paint brush horizontal to the ground

Figure 10. Clipboard and paint brush vertical to the ground
The purpose of this test is to check if a clipboard spring has the compressive strength to hold a
paintbrush.

3.1.3 Conversion of Angles to Discrete Steps

A crucial step in the implementation of the inverse kinematics solution is to ensure that the
results from the solver can be used to control the arm. The angles on the robot are controlled by
stepper motors, which can only rotate in 1.8o steps. Because of the discrepancy between the

12

continuous angles solved by Newton’s method and the discrete steps the motors can take, a
function to convert the angles to steps was necessary to implement.

A function named convert was implemented in the Python code. The function takes in a list of
lists of angles and returns a list of lists of steps for the motors. The sign of the steps indicates the
direction to turn the motors and the magnitude specifies the number of steps a given motor
should take. To find the magnitude, the function simply multiplies each angle in radians by the
conversion factor, and the sign of the angle is already specified, so no treatment is required
regarding the angle.

To test this function, a tiny simulation was created where the end-effector must move in a
horizontal line and then return to its starting position by tracing the line in reverse. The results
from this test showed that the motor at the base took six steps in one direction and only five steps
when returning to the starting position.

Analysis of this test is discussed in Section 3.2.3 and explains that the initial implementation of
the convert function induces significant rounding error. The analysis section discusses the logical
basis of the solution to the rounding error that was implemented to correct this problem, which is
governed by the following equation.

To test the corrected convert function, coordinates for a star were passed into Newton’s method
to solve for angles, and the angles from Newton’s method were passed into the convert function
to solve for the number of steps required for the end-effector to move between each point. The
test was designed so that the end-effector must return to the starting point because if the rounding
error continues to add instead of being corrected, the robot would not return to the starting point.

The results indicated that the test of the function was successful and the rounding errors are
minimised. Analysis of the results are presented in Section 3.2.3.

3.1.4 Functionality of the UI
Test U7: Extracting coordinates from the SVG files and Drawing Graphics

Using the SVG library on Arduino, the points of each individual segment were extracted and the
image was split up into 1000 separate points. Using the turtle library, a window was created and

13

https://youtu.be/zXxRoCO673k

the turtle was instructed to draw segments from the end of one point to the beginning of the next
point, using the first point as the starting coordinates for the turtle.

Figure 11. Comparison of Image of Graphic from the Original SVG File (left) and the Image
Drawn Using Turtle Graphics Using the Coordinates of the SVG File (right)

Test U8: Testing the Stop Button on the User Interface

In Test U8, test U7 was repeated using the same SVG file. Around the midpoint of the drawing,
the stop button on the UI was pressed to ensure that the turtle was able to stop moving, given
commands from the UI, which can later be translated into commands to the robot.

14

https://youtu.be/QdbgciSGRcA

3.1.5 Structural Strength of the End-Effector

Figure 13. The end-effector holding a pencil
This test was to determine if the end-effector has the structural integrity to hold objects in place
without having damage occur to the object or end-effector. A maximum safe mass was then
going to be chosen based on the results of the test.

3.1.6 Compressive Strength of the End-Effector

Figure 14. The end-effector holding a paintbrush and broken EE2
The purpose of this test was to determine whether the compressive strength of the spring was
strong enough to hold an object in the end effector without slippage occurring.

3.1.7 Robotic Arm Supporting End-Effector and Object

15

Figure 15. The end-effector holding a paintbrush while being attached to the arm
The purpose of this test was to determine if the arm had the structural strength to hold the
combined masses of the end effector and another object.

3.1.8 Functionality of the Overall Arm
Test F1: Controlling the movement of the motors

The objective of Test F1 was to test if the arm could be controlled using Python code instead of
Arduino code. In test F1, the standard Firmata library was uploaded to the Arduino, and using
the Pyfirmata library in Python, commands shown in Figure 16 were given to the Arduino board
to move the motor at the base of the arm a total of 20 steps in the clockwise direction.

16

https://youtu.be/C8jUZi-WHOg

Figure 16. Sample code for Movement of Motor in the x-direction a total of 20 steps.

The success of the test was measured qualitatively by visually determining whether the arm
rotated clockwise at the base. The results of this test were essentially binary: the code would
work, or not work. If the code worked, then more complex tests with higher fidelity would be
executed. If the test failed, debugging would take place to try to solve the error. The results of
this test are shown in the video at the top of this section and the analysis of this result will be
discussed in Section 3.2.9.

Test F2: Moving the arm in a horizontal line
In Test F2, the standard Firmata library was uploaded to the Arduino. Using the Newton’s
Method function, which was previously written, the function was given the start and end
coordinates of (0.1, 0.01, 0.1) and (0.1, 0.1, 0.1), respectively, and returned a set of angles that
the robot needed to be moved to in every direction. Using the convert function that was
previously written, the angles were converted into steps that the robot needed to take with the
positive and negative signs representing the counterclockwise or clockwise directions of the
motors. In this case, the given steps for each direction were (218, -1, -30). These steps were
given to the arduinoTest.py file that instructed the angles to move using the Pyfirmata library and
the robot was able to move in a diagonal line.

17

https://www.youtube.com/watch?v=_Dbqv7UTzHA

This test (F2) has higher fidelity than Test F1 because as opposed to indicating exactly how
many steps each motor should take, this test aims to draw a line from one point to another, where
the points are specified as coordinates, passed through Newton’s method and the convert
function, and then to the pyfirmata code. This test was partially successful because as seen in the
video, the movement of the arm corresponds to the number of steps indicated (218, -1, -30),
however, there was a problem with the coordinates, which will be analysed in Section 3.2.10.

3.2 Analysis of Results

3.2.3 Conversion of Angles to Discrete Steps

The results from the initial test where the end-effector had to move in a horizontal line and return
to its starting position showed that the motor at the base took six steps in one direction and only
five steps when returning to the starting position. If the function were correct, when returning,
the motor should have taken six steps to return to its initial position. This incorrect result is
certainly caused by rounding error.

If an angle is between 0o and 1.8o, such as 0.9o, the code will have to round the value of the angle
to the nearest step. This rounding error may not be problematic when applied to one angle, but
with hundreds of angles, the error of a given error will be the sum of errors of all prior angles.

To prevent rounding errors from carrying over to other angles, the solution to this rounding error
makes use of the fact that lists in python are mutable. The function always calculates the
difference between two consecutive angles in steps, given by the following equation.

The solution to the rounding error is that after the number of steps between two angles is
calculated, the value of the second angle is corrected based on the number of steps calculated,
shown by this correction equation.

This correction ensures that even if the position of the end-effector is incorrect due to rounding
error, the next calculation considers the actual position of the end-effector, as opposed to
considering the position at which the end-effector should be. This correction is governed by the
following equation.

18

The results of the star test (described in Section 3.1.3) were analysed by computing the sum of
all the steps taken by one motor. If the sum of the steps taken by that motor is zero, then that
motor has returned to its initial state. If all three motors have returned to their initial states, then
the end-effector has returned to its initial position and the correction implemented in the convert
function is successful.

The test for the star was successful, so other tests where the end-effector must move in arbitrary
geometrical patterns and return to its starting position were generated to further test the
functionality. The results from all other tests indicated that the end-effector returned to its initial
position, so the prototype test was concluded to be successful.

3.2.4 Functionality of User Interface

Test U7 was conducted on the user interface to ensure that it was able to take an SVG file and
extract the correct coordinates to draw the image using turtle graphics. From the results shown in
section 3.1.4 of this report, the UI was able to draw the image using turtle graphics to a high
degree of accuracy, as shown in the side by side comparison of the image from the SVG file and
the image from the turtle graphics, shown in Figure 11.

3.2.5 Safety Features on User Interface
Test U8 was conducted to determine if the safety features on the user interface were able to
quickly and safely stop the movement of the robot. The test results for Test U8 shown in section
3.1.4 of this report show that the stop button on the UI was able to successfully stop the
movement of the turtle graphics, demonstrating the feasibility of the UI.

3.2.6 Structural Strength of the End-Effector

The end-effector was able to hold the mass of a paintbrush and pencil even after suffering
structural damage. This leads the group to assume that similar masses should be acceptable with
a structurally intact end-effector. However, during the tests slippage did occur while holding a
paintbrush and pencil. Less slippage occurred with a cell phone. These results may be caused by
the different centres of mass of the various objects as well as the shape contrast.

3.2.7 Compressive Strength of the End-Effector

The end-effector was able to hold a pencil and paintbrush in place, however there was slippage
that occurred. The end effector will be modified to minimise possible slippage. A cell phone was
also held by an end-effector. This test will not be conducted while attached to the arm due to the
mass of the average cell phone in the group exceeding the maximum load capacity of the arm
(without including the mass of the end effector).

The second end effector prototype successfully held a paintbrush without slipping when it was in

19

it’s intended formation, however some breakage occurred while removing the supports from the
print, this was partially fixed with duct tape and will soon be with krazy glue to ensure a stronger
more rigid body. The take away from these tests is that the time should’ve been taken to print
with a smaller nozzle size to ensure better quality and finer prints.

3.2.8 Robotic Arm Supporting End-Effector and Object

The robotic arm was able to be successfully connected to the end-effector. While attached the
end-effector was easily able to open and close to accommodate for the placement or removal of
an object. The robotic arm was able to withstand the weight of the end-effector in addition to the
object the end-effector was holding.

3.2.9 Controlling the Movement of the Motors

The motors of the arm were able to be controlled using the Python and the Pyfirmata library, as
shown in section 3.1.8, however, the initial movements of the arm were slow and choppy and
unsuitable for drawing images. To fix the issue, the delay between the pulses given to the motor
were shortened to make the robot move as smoothly as possible.

3.2.10 Moving the Arm in a Straight Line

As seen in the video in Section 3.1.8, the arm rotates mostly in at the base and at the top-most
point. This qualitative observation matches the steps specified by the code: (218, -1, -30). The
match indicates that the connection between the Python code and the arduino using the pyfirmata
library works well. However, an inaccuracy in this test is that the coordinates given to Newton’s
method were not in the robot’s workspace, so the inverse kinematics solution diverged and found
an incorrect solution.

From this test, several learning points were obtained. One was confirmation that the connection
between Python and Arduino works, but to test more rigorously in future tests, coordinates that
have known solutions should be tested, as well as any other parameters that are used so that the
test is as isolated as possible. Once all components of the system are known to be working, then
a comprehensive test can be executed. Given the result, this comprehensive test was clearly
premature. Another learning point was that the inverse kinematics solution should be updated to
include error handling, so that invalid coordinates cannot be passed into Newton’s method.

After analysing the results from this test, future steps to improve the code are to make the rates at
which the motors turn more general to any case. To draw a diagonal line, the motors have to
appear to be moving simultaneously at the correct rates. To achieve this result by rotating the
motors using serial commands, an algorithm to determine how often each motor should step
must be developed.

Once the rates of rotation have been generalised, the next prototype test would be to pass an
SVG file into the GUI and have the robot draw on a surface using the end effector and a marker.
This future test will be the most comprehensive so far.

20

4.0 Current Bill of Materials
Some small changes have been made to the bill of materials bringing the total down to $1.75,
which is under the $50 limit. At the time it was created, an Arduino Uno and shield were
included; they have since been taken out after discovering that they are given in class.
See spreadsheet for details.

5.0 Conclusion
The Department of National Defence has a need for a robotic arm that uses inverse kinematics to
paint surfaces. In this deliverable, the last prototype was finalized using feedback from the user
and the prototype test plan was completed. The next steps of this project are to complete a
detailed user manual.

21

https://docs.google.com/spreadsheets/d/15cni-5vKvA-95ndAx54FuAEuGdcO1bp6oyQC9yJOpiQ/edit#gid=0

