
Project Deliverable F
Prototype I and Customer Feedback

Marie Levin, Leila Smaili, Rafiullah Hamdard, Hanna Paik, and

Yifei Li

March 5, 2023

Abstract

This document contains Project Deliverable F. The purpose of this document is to show our

first prototype of the product. This prototype was created according to the client's

needs/requests, and through user/technical benchmarking. Moreover, this document

contains the customer feedback which we got during our second meeting with the client.

Table of Contents
Table of Contents 4
1.0 Introduction 5

2.0 Feedback from the client: 6
3.0 Objectives of our first prototype 6

3.1 Prototype of Pure UI 7
3.1.1 Critical Component 8

3.2 Prototype of V-curve Theory 9
3.2.0 How the Algorithm was Derived 10

4.0 Prototyping Test Plan 14
4.1 General Test plan: 14
4.2 Detailed Test Plan: 15
4.2 UI Test plan (detailed) 18

5.0 General Analysis of Critical Subsystems 19
5.1 UI (detailed) 20

6.0 Feedback and Comments 22
6.1 UI 22
6.2 Algorithm 23

Wrike Snapshot: 23
7.0 References 24

1.0 Introduction
Robert Ritchie has tasked our design team to create a product that displays the
specific conveyor speeds that optimize the yield of beer from his manufacturing line.
Following the initial client meeting, our team developed the following problem
statement.

“A need exists for Robert Ritchie and his fellow supervisors to find the optimal
speeds of their beer packaging process to ensure it is “always at top efficiency
(Project Background, Brightspace)”. The solution must have an attractive and
straightforward interface that uses a flexible algorithm based on the V-Curve Theory
to report optimized speeds of each unit and make recommendations on how to
achieve them.”

From this problem, we developed design criteria and metrics that will be used to
measure our design’s ability to solve our client’s problem. With research,
benchmarking, and brainstorming, the first conceptual design was developed and it
was presented during the second client meeting.

After we presented our presentation to the client in our second meeting and he
expressed interest in our conceptual design, our team developed the first prototype
of the product. This prototype was created based on the feedback that we got from
the client meeting, following the client’s needs, and meeting the design criteria.

2.0 Feedback from the client:

After we presented our conceptual design to the client during the second meeting,
the client displayed interest in our conceptual design. The client promised that he
would provide us with the following raw data:

1: Speed of the filler station (cans per minute).
2: The speed of the conveyors (cans per minute).
3: The preset speeds of different units.

We presented the client with two possible designs:

1: Windows software
2: Mobile application

The client was more interested in mobile applications than windows software.
Because he and his team currently use iPads in their office, it was clear that an iOS
app was much more interesting to him than an android device. In addition, the client
stated that he wants to be able to carry the device around the production line. Then,
he can change the can filler speeds and type the desired input speed into the device,
thus he should be able to get the best output and optimize his production line.

3.0 Objectives of our first prototype

Based on the feedback that we got from the client in our second meeting, our team
developed the first prototype. Moreover, this prototype will be used in our future
design choices and will improve the design and product.

Our goals for creating our first prototype are

1: To learn more and understand better our conceptual design

2: To get constructive feedback from the client

3: To reduce the risk and uncertainty associated with a specific aspect of the design

4: To measure the overall performance

3.1 Prototype of Pure UI
In the previous deliverable, the final conceptual design had been created.

Figure 1 Final Conceptual Design

In this deliverable, a sample interface was created using Xcode based on the final
conceptual design. At the moment, this is purely a temporary UI prototype according to the
design plan. This prototype currently has no ability to do arithmetic and provide results. The
goal of the UI is to test its capability and ability for user interaction. Its function will be
perfected later based on the design plan.

Figure 1 Screenshot of simulation of the interface

3.1.1 Critical Component
Since it is just a pure UI, little engineering and science knowledge has been involved.

1: Production line display.
It helps users to visually connect V-theory to the conveyor system so that the UI is
easier to understand.

2: Table
All desired data (optimal data) will show in the table so that users are able to
distinguish the system efficiency quickly.

3: Switch
A “lock” is turned on when the user no longer needs to change the data. This is to
prevent accidental edits.

4: Editable Text area (input: Speed of the conveyor)
Keyboard enter available.

Figure 3 Editable Text area

Users are able to input original data so that the system can calculate the desired optimal
data of the system through an installed algorithm.

3.2 Prototype of V-curve Theory

This prototype is a proof of concept for our algorithm that will be implemented into our
application to calculate the speeds of each unit in our production line given the filler speed.

This prototype was created to ease the process of building the back end of our
application, instead of working straight with XCode and attempting to use Objective C to
create the formulas that would calculate the speeds of each Unit. This Prototype outlines
the formula that needs only to be translated into Objective C to build the back end of our
application. The prototype breaks down the construction of the back end of our application
into two parts; calculating the formulas and translating them into Objective C.

3.2.0 How the Algorithm was Derived
This prototype is an algorithm derived from the V-Curve Theory presented by

LineView. They state that the V-curve Theory uses the slowest unit on a line and all the units
before and after the line are 10% faster than the unit before or after it (LineView 2022). This
is evident in figure 1:

Figure 1: “Here's a shot of what a V-Curve might look like in a typical production line”
(LineView 2022)

This 10 percent incrementation is a Geometric Series as seen in the equation below:

The Table Below shows this equation implemented with the historical filler speed of Run 1
and Run 2.

Table 1: Geometric Series

Distance from Filler
Run 1 Run 2

CAN DEPALLETIZER 2 175(1.10)^2
=211.75

200(1.10)^2
=242

CAN RINSER 1 175(1.10)^1
=192.5

200(1.10)^1
=220

CAN FILLER

0 175 200

CAN SEAMER

0 175 200

CAN PASTEURIZER 1 175(1.10)^1
=192.5

200(1.10)^2
=220

DUODOZEN WESTROCK PACKER 2 175(1.10)^2
=211.75

200(1.10)^2
=242

This equation alone is not enough to calculate accurate speeds as the farther one gets from
the filler the less accurate this equation becomes when comparing it to real data. This can be
seen in the graph below:

The difference in distribution is similar to that of a power series as shown below:

Power incrementation (n1) is not one-to-one with the distance from filler, therefore through
trial and error the relationship between the n1 of the power series and the n of the Geo
series was found to be:

before the filler and after the filler. The 0.2 increase was derived from the fact
that after the Filler, the Can Seamer adds a greater distance from the filler and affects the
rest of the production line.

This formula as a whole is a combination of a Geometric and Power Series, which are the
critical components of this algorithm prototype.

a1: Filler Speed
r: 1.10 (10% increment)
n: distance from filler (i.e the CAN RINSER is 1 away from the filler)
x: Filler Speed / 100 (value derived from experimentation)

This formula was derived from experimenting during run 2, which has a filler speed of
200cpm. This means that a conversion is necessary when using other filler speeds.

The final formula is shown below:

The table below shows the full process of implementing the algorithm on the historical data
of the canning line.

Table 2: Full Algorithm Process

Unit run 1 run 2
Geo
Series on
run 2

Algorithm on
run 2

Geo
Series on
run 1

Algorithm on
run 1

MSB-PCKG-CANL-CA

N DEPAL CAN DEPALLETIZER 759.02064 1004.0352 242 968

211.7

5 758.49054

MSB-PCKG-CANL-CA

N RINSER CAN RINSER 288.0045 319.8489 220 311.12698 192.5 264.8271

MSB-PCKG-CANL-CA

N FILLER CAN FILLER 175 200 200 200 175 175

MSB-PCKG-CANL-CA

N SEAMER CAN SEAMER 175 200 200 200 175 175

MSB-PCKG-CANL-CA

N PASTEURIZER CAN PASTEURIZER 352.1616 352.1616 220 357.39105 192.5 301.2043

MSB-PCKG-CANL-CA

N PACKER

DUODOZEN

WESTROCK PACKER 899.136 1067.724 242 1111.94

211.7

5 862.67839

(fixed value)

This is a graphical representation of each historical run and the derived speeds from the
algorithm. Visually, the algorithm is close enough to the historical run to be considered an
accurate algorithm. From this visual observation the algorithm passes the historical
reference test.

The graph above shows the line with only the WESTROCK packer running. The MEAD
packer is very different from the WESTROCK because it doesn’t run at high speeds. Instead
it runs at virtually the same speed as the pasteurizer. Therefore such a case would require
our application to allow the user to adjust if the unit will continue the algorithm or use the
previous value.

Unit run 1 run 2

Geo
Series on run
2

Algorithm on
run 2

Geo
Series on
run 1

Algorithm
on run 1

CAN

DEPALLETIZER 759.02064 1004.0352 242 968 211.75 758.49054

CAN RINSER 288.0045 319.8489 220 311.12698 192.5 264.8271

CAN FILLER 175 200 200 200 175 175

CAN SEAMER 175 200 200 200 175 175

CAN PASTEURIZER 352.1616 352.1616 220 357.39105 192.5 301.2043

MEAD PACKER 360 360 220 357.39105 192.5 301.2043

4.0 Prototyping Test Plan

4.1 General Test plan:

Test ID Test Objective

(Why)

Description of

Prototype used and

of Basic Test Method

(What)

Description of

Results to be

Recorded and

how these results

will be used

(How)

Estimated Test

duration and

planned start

date

(When)

1 To test whether

the function is

correct or not.

(Main part of the

project)

Numerical: Excel

Prototype: Algorithm

on Excel

If the algorithm

matches the test

cases that we

created from

historical data.

4-7th march

2 To improve the

user interface

Analytical: TestFilght If each function of

the application

works

Is the app able to

run? Yes -> record

If no, improve.

6-10th march

To test the

uncertainty and

to check the

application if it

works or no

Experimental: To

show the client

Client feedback: If

they love it

13-17th march

4.2 Detailed Test Plan:

Test ID Test Objective

(Why)

Description of Prototype
used and of Basic Test

Method

(What)

Description of
Results to be

Recorded and how
these results will be

used (How)

Estimated Test
duration and

planned start date

(When)

1 [Deploy Test]

The objective is to
test if we need to
buy a developer
account to deploy
an application for
our client. And test
the feasibility of
using Xcode.

Prototype Xcode tut will
be used.

An application that will
most likely be a tutorial of
how to use/ getting started
with Xcode will be
attempted to be
downloaded on an Ipad
without a developer
account.

Recorded:
Fail

Response:

If the test fails then a
developer account
will be used to deploy
the real thing.
**developer account
will be bought when
application is fully
ready**

26-27th Feb

2 [Pure UI Test]

The objective of
the test is to make
sure the program
can be interacted
with without issue
before focusing on
its ability to
perform its task.

Test the functionality and
ease of use of the
UI.(refer to 5.1)

Prototype UI Shell will be
used.

A prototype of the UI that
does not perform any real
calculations or
simulations.

Recorded:
Score 5/5 students :
pass

Response:
Some suggestions
have been given and
will be taken into
account for final UI
design (see 5.1)
UIkit will continue to
be used

4 - 7th March

3 [UI aesthetics Test]

The objective is to
test the aesthetics
of the UI with the
user.

Test the aesthetics of the
UI with client feedback.

Prototype UI Shell will be
used.

A picture of the UI will be
sent to the client for
feedback.

Record:
A number from one
to ten will be
recorded on the
client’s likability of the
UI colour scheme,
Formatting and
Aesthetics.
Score > 8/10 : pass
Score <8/10 : fail
Response:
Ask for feedback and
fix the UI. Iterate until
it passes.

6-10th March

Need time for the
Client to respond.

4 [Algorithm Test]

The objective of
this Test is to prove

Test of the algorithm that
predicts the optimal
speeds.

Record:
Margin of Error: 10%
Pass.

Response:

4-7th March

our ability to
calculate the
optimal speeds
before
implementing it
into the
application.

Prototype ExcelA will be
used.

An excel spreadsheet,
that displays all the
elements and functions of
the algorithm and when
given the historical data it
is able to replicate the
optimal speeds within a
small percentage of error.

Algorithms will be
expanded to include
the conveyors in the
future.

5 [Integration Test]

The objective of
this test is to make
sure that the
display of the input
and output is well
formatted on the
UI.

Test of the algorithm’s
integration into the
UI.Prototype R1 will be
used.

A first rendition of the
application will be created
that includes the UI and
the algorithm working
together, the focus will be
on the formatting of the
input and output numbers
and other variables on the
UI and the ability of the
user to change aspects of
the production line and the
algorithm still calculates
things accordingly to test
cases made from Excel
prototype.

Record:

The Pass or Fail of
the applications
ability to correctly
format the UI and
output correct speeds
of three test cases
derived from the
Excel prototype.

3 Passes = Pass

< 3 Passes = Fail

Response:

Reference working
Excel algorithms and
find out what's
different or causing
problems. Iterate until
3 passes.

9-10th March

6 [Input Error Test]

The objective of
testing wrong
inputs is to make
sure that the inputs
cannot exceed the

Test of the UI ability to
catch error inputs.

Prototype R2 will be used.

On the second rendition of
the application where
invalid errors are caught,

Record:
Number of invalid
inputs that were
stopped
Number of invalid
inputs that were
accepted
The ratio between
invalid inputs caught

13-14th March

max speeds of the
conveyors.

a comprehensive
collection of bad inputs
will be tested on each
possible place where the
user can do something
wrong.

and accepted must
be 90% caught to
pass.
Response: catch
invalid inputs that
were accepted and
iterate until pass

7 [Multiple Tab Test]

The objective of
this test would be
to make sure that
the program is able
to handle multiple
sets of inputs and
display each
accordingly.

Test of the applications
ability to simulate multiple
production lines and save
and load the users edits to
each production line.

Prototype R3 will be used.

On the third rendition of
the application where
multiple lines can be
added. Multiple production
lines will be added to the
application. They will be
edited, saved and loaded
at selected points
throughout a simulated
use of the application.

Record:

Based on the
information of
different production
lines. Three
production lines will
be tested to run on
multiple simulations
at once. If they can
be created, saved
and loaded in the
right places during
regular usage of the
application then the
test is passed.

Response:

Figure out what went
wrong and fix the
code and iterate the
test until it passes.

13-14th March

8 [Stress Test]

The objective of
the test would be
to figure out and
test the limits of
the application so
measures can be
put in place to
make sure that the
user knows the
limit of the
application

A stress test on the
amount of data can be
added to the program
before it loses functionality
or UI formatting.

Prototype R3 will be used.

On the Third rendition of
the application. Production
lines will continuously be
added to the application
until it crashes. Conveyors

Record:

The limit to the
number of production
lines, conveyors and
units and numbers
that can be inputted
into the system
before the UI gets
messed up or the
application crashes.

15-16th March

and Units will continuously
be added to a single line
until the UI formatting
becomes illegible or the
program crashes.
Extremely large numbers
will be added to the filler
speed or other inputs until
the application crashes or
the UI formatting becomes
illegible.

If the limits < the
theoretical values
that would be needed
to run the application
under normal
conditions
(determined from the
information we
gathered for multiple
tab tests) then it fails.

Response:

Find the source of
the data storage limit
and work around or
buy more storage.
Fix how data is saved
and loaded if there is
a formatting issue.
Iterate until pass.

9 [Random Person
Ease of Use Test]

The objective
would be to make
sure that the
program and final
user manual is
comprehensive for
the client.

A test on the ease of use
of random person ability to
follow an instruction
manual and the
application.

Prototype R3 will be used.

The application and a user
manual will be sent to a
person with no knowledge
of beer production. They
will be required to
complete a set of
instructions from the user
manual. They will be
asked to give feedback on
the ease of use.

Record:

The feedback and
the percentage of
tasks that the person
was able to complete
will be recorded.

Response:

Use feedback to
improve the user
manual and UI if
failed. Iterate until
pass.

March 18-20th.

4.2 UI Test plan (detailed)

The objective of the UI Test plan is to check
1: Are potential users able to access and use the app smoothly?

Why: App capability is essential for this project.

2: Is the interface logic appropriate and intuitive-accessible?

Why: User interaction is necessary.

3: Is the App able to run on the Ipad? (client requirement)

Why: The client has Ipads as working equipment.

4: Does the user like the interface formatting?

Why: Beauty is also significant.

When: Before the due date of Deliverable F.

How: In order to test the app, the UI has been shown to random students. Unfortunately, we
do not have time to show this UI to clients (clients are satisfied with the final conceptual
design).

5.0 General Analysis of Critical Subsystems
Reference 3.2.0 for algorithm Critical subsystems

Subsystem # Subsystem Components &

Materials

Properties

1 Xcode
● Source Editor

● Assistant Editor

● Version Editor

● Interface Builder

● Simulator

● Integrated Build

System

● Compilers

● Graphical

Debugger

● Supports multiple platforms

● Free for Apple users

● User-friendly interface

● Best application testing

2 Testflight ● Creating app

● Testing app

● Optimising app

● Clear process

● Easy testing

● Automatically records data

3 Excel ● Cells

● Rows

● Columns

● Menu bar

● Formula bar

● Storing Data

● Performing calculation

● Data analysis

● Graphs and charts

● Basic formulas and coding

5.1 UI (detailed)
- Supports multiple platforms

This UI (app) can be accessed through any device that installed the IOS system.
Available devices are shown in the following figure.

- Free for Apple users

Once the app is published onto TestFlight, users are able to free download it with a redeem

code.

Only the user with a redeem code can download and access the app, it raises the security of

the app.

- User-friendly interface

-

- The production line is corresponding to the V-curve theory. Users are able to visually

see the numerical relationship of the speed of the conveyors. This helps in reducing

the error-speed type-in.

- Best application testing (Please see in feedback and comment part).

6.0 Feedback and Comments
This part is to show the collected feedback and comments on the prototypes.

6.1 UI

Question Student A Student B Student C Student D

Are you able to
access and use
the app
smoothly?

YES YES YES YES

Is the interface
logic
appropriate and
intuitive
accessible?

The production
line makes
sense.

I really like the
logic of the
production line.

I like the design
of the V-theory
corresponding
to the
production line.

YES.

Does the user
like the
interface
formatting?

Student A likes
the design of
the production
line.

Student B
thinks the table
looks a little bit
abrupt.

Student C loves
the overall
design.
However, she
thinks there are
too many
switches.

Student D
thinks the Table
can be placed
to the right of
the production
line.

Is the app able
to run on the
Ipad?

YES YES YES YES

6.2 Algorithm

Through visual representation, It is clear that the algorithm is able to derive unit speeds that
are very close to the historical data. From this observation the algorithm passes the historical
data test. Next week our team will work on expanding the algorithm to solve for conveyor
speeds aswell.

Wrike Snapshot:

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=o7djfrcgqKbFJpT7HOlRJjcpB
mwneGtp%7CIE2DSNZVHA2DELSTGIYA

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=o7djfrcgqKbFJpT7HOlRJjcpBmwneGtp%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=o7djfrcgqKbFJpT7HOlRJjcpBmwneGtp%7CIE2DSNZVHA2DELSTGIYA

7.0 References

(n.d.). Checking link. Retrieved March 5, 2023,

https://statics.teams.cdn.office.net/evergreen-assets/safelinks/1/atp-safelinks.html

Ekren, Kemal. “What Is Xcode and How to Use It?” Netguru, 25 November 2022,

https://www.netguru.com/blog/what-is-xcode-and-how-to-use-it

How to Use TestFlight For Beta Testing: Benefits & Pre-Requisites- Testrig. (n.d.).

Testrig Technologies. Retrieved March 4, 2023, from

https://www.testrigtechnologies.com/ios-application-beta-testing-using-testflight

Is the V-Curve the best option for setting accumulation line speed? (n.d.). LineView

Solutions. Retrieved March 5, 2023, from

https://news.lineview.com/is-the-v-curve-theory-the-best-option-for-setting-accumulation-line-

speed

Microsoft Excel Spreadsheet Software. (n.d.). Microsoft. Retrieved February 19, 2023, from

https://www.microsoft.com/en-us/microsoft-365/excel

Xcode 14 Overview. (n.d.). Apple Developer. Retrieved February 19, 2023, from

https://developer.apple.com/xcode/

https://www.testrigtechnologies.com/ios-application-beta-testing-using-testflight
https://news.lineview.com/is-the-v-curve-theory-the-best-option-for-setting-accumulation-line-speed
https://news.lineview.com/is-the-v-curve-theory-the-best-option-for-setting-accumulation-line-speed
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

