
Project Deliverable E
Project Schedule and Cost

Marie Levin, Leila Smaili, Rafiullah Hamdard, Hanna Paik, and

Yifei Li

February 19, 2023

Abstract

This document contains Project Deliverable E. The purpose of this document is to provide an

estimation of the costs and the materials that will be required for our project. The costs of the

materials were analysed by the team and will be approved by TA. This cost estimation was

examined based on types of materials and their quantities that are required for the project.

Table of Contents
Table of Contents 4

1.0 Introduction 5

2.0 Final Conceptual Design 6
2.1 Elements of UI 6
2.2 Algorithm Breakdown 8
2.3 Hardware Specifications 8

3.0 List of Equipment 9

4.0 Bill Of Materials (BOM) 10

5.0 Project Risk 12
5.1 Deploying the iOS application to an iPad 12
5.2 Application Security 12
5.3 Mac availability to use Xcode 13

6.0 Prototype Plans 13
6.1 Tutorial of Xcode Application [Xcode tut] 13
6.2 Excel Algorithm [ExcelA] 14
6.3 Pure UI [UI Shell] 14
6.4 Integration of UI and Algorithm [R1] 14
6.5 Invalid Input Catching Feature [R2] 14
6.6 Multiple Line Simulations Feature [R3] 14

7.0 Prototyping Test Plan 16

8.0 References 20

1.0 Introduction

Robert Ritchie has tasked our design team to create a product that displays the specific conveyor speeds that
optimise the yield of beer from his manufacturing line. Following the initial client meeting, our team created the
following problem statement.

“A need exists for Robert Ritchie and his fellow supervisors to find the optimal speeds of their beer packaging
process to ensure it is “always at top efficiency (Project Background, Brightspace)”. The solution must have an
attractive and straightforward interface that uses a flexible algorithm based on the V-Curve Theory to report optimised
speeds of each unit and make recommendations on how to achieve them.”

From this problem we developed a design criteria and metrics that will be used to measure our design’s ability to
solve our client’s problem. With research, benchmarking, and brainstorming, the first conceptual design was
developed and it was presented to the second client meeting.

After we presented our presentation to the client in our second meeting, he displayed interest in our conceptual
design. The client promised that he will provide us with the following raw data:

1: Speed of the filler station (cans per minute).

2: The speed of the conveyors (cans per minute.)

3: The preset speeds of different units

We presented the client with two possible designs:

1: Windows software 2: Mobile application

The client was more interested in mobile applications than windows software. Because he and his team currently use
iPads in their office, it was clear that an iOS app was of much more interest to him as opposed to an android device.
Moreover, the client insisted that he wants to be able to carry the device around the production line. Then, he can
change the can filler speeds and type the desired input speed into the device, thus he should be able to get the best
output and optimise his production line.

We will need to find a mechanism to convert hertz to cans per minute, because they use a PLC (an industrial
computer control system), and it shows the drive in the hertz that is currently running. Once we do this, we will be
able to optimise the conveyors based on the given raw data.

This document will go in depth into our final design concept. Furthermore, it will list all the required materials and
equipment that we estimated. These materials will be used to construct and test prototypes, and to create a final
design. This document will outline a comprehensive overview of prototypes and tests that will be incrementally done
to ensure the completion of all aspects of the design. In addition, we will have our BOM (bill of materials), that will
summarise the estimated budget of the project.

We must be careful with our limited budget and make a list of all the materials that we need, alongside their
associated costs.

2.0 Final Conceptual Design

2.1 Elements of UI

→ Line windows

Our application will have the ability to have up to 5 separate line simulations. Upon selecting a tab, the

simulation for the chosen line can be used.

→Edit line function

The production line can be edited with the click of the ‘edit line’ button. This button will lead to a

separate window that displays the production line in a linear view:

This window contains all the preset information of the production line which can be edited and new

units and conveyors can be added to the line. There will be a finite amount of units and conveyors that

can be added to a single production line. Inevitably, there will be too many units to display at once so the

list can be scrolled horizontally.

→ Unit edit boxes

The unit edit boxes will be able to set the desired speed for the unit that the production line depends on.

Although this will mainly be the filler line, other units can be the dependent unit by selecting the locks at

the side of the unit editor of the selected unit. This makes those values constraints. Then to begin the

calculations with the desired information the user will tap “Run”.

→ Production line display

The production line display will visually show the speeds of each part of the production line. The units

will be displayed at different heights depending on their speed in reference to the slowest speed to

visually Show the V-Curve. Additionally, all information relevant to the conveyors will be present.

conveyors are shown as a circle with a number (the number of conveyors) when collapsed. When

expanded they are shown in a table format with both frequency and cans per minute. Clicking on a unit

will display their max speeds, and the conveyors should show both their cans/per minute speed and

frequency (Hz).

2.2 Algorithm Breakdown

The Algorithm will be used to calculate the speeds and efficiencies of each unit with reference to the

desired speed of any machine. The algorithm will be given the desired speed and the set up of the line.

it will then calculate the speeds of all equipment in the line based on a v-curve with the filler as the

bottleneck step. The units around the filler unit will need to be 10% faster and increment to be ten

percent faster based on their distance from the filler speed.

For example if there was a production line set up like so:

Depalletizer - Rinser - Filler - Pasteurizer - Packer

Then the speeds of the rinser and the pasteurizer will be 10% faster then the filler, and the depalletizer

and packer will be 20% faster than the filler. The conveyors between the units will have speeds that

incrementally build up to the speed of the next unit. The graduation of conveyor speeds from one to the

next will be determined by how many conveyors are between each line and the change in the conveyor

widths. It will also calculate the efficiency of each machine and the overall equipment effectiveness

(OEE) based on the inputted information and the calculated data. Finally, each machine efficiency and

the OEE will be marked if they are outside an acceptable range (to be determined).

2.3 Hardware Specifications
Our software will be a native iOS application that will run on an iPad. The iPad was the client’s preferred

mobile device, as he wanted to bring the device into the production line area, and the company already

has apple devices in use. To properly integrate into pre-existing company products and listen to the

client’s preferences, we had to switch from our original windows application concept to an iOS

application.

To program and construct the software application, Xcode will be used. It is an IDE that can only be used

on an Apple computer (Mac).

3.0 List of Equipment
In the table below, we have outlined the software and technology that we will be using to create
our final product.

No Item name Description Type Prototype name

(refer to section
7.0)

Source

1 Xcode IDE for native iOS
application

Software All prototypes
except for ExcelA

https://developer.apple.com/xcode/

2 Xcode Object
Libraries

UI libraries for
personalising and
customising UI

Software - UI shell
- R1
- R2
- R3

https://developer.apple.com/document
ation/uikit
https://developer.apple.com/xcode/swi
ftui/

3 Excel Application used
to create
algorithm and
compute test
cases

Software - ExcelA https://www.microsoft.com/en-us/micr
osoft-365/excel

4 TestFlight iOS application
testing software

Software Prototypes that
require Ipad testing
simulation

- UI shell
- R1
- R2
- R3

https://developer.apple.com/testflight/

5 Ipad Device used to
run application
software

Hardware Prototypes that
require Ipad

- Xcode tut
- R1
- R2
- R3

https://www.apple.com/ca/ipad-air/

6 Mac Device used to
run Xcode

Hardware All Prototypes
except ExcelA

https://www.uottawa.ca/faculty-arts/fa
cilities-resources

https://developer.apple.com/xcode/
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://developer.apple.com/testflight/
https://www.apple.com/ca/ipad-air/
https://www.uottawa.ca/faculty-arts/facilities-resources
https://www.uottawa.ca/faculty-arts/facilities-resources

4.0 Bill Of Materials (BOM)
In the table below, we have outlined the required materials and costs for creating our final
product.

No Item name Description Units of
measure

Quantity Unit Cost

($)

Extended

Cost ($)

Link

1 Apple developer
account (refer to
section 6.0 on free
alternative ways of
deploying application)

To deploy the
application for
the company

Subscription 1 99 99$ per year the
app is used

(possibility that
subscription can
be cancelled
without losing
the application)

https://develo
per.apple.co
m/programs/
enroll/

2 Xcode IDE for native
ios application

Software
application

1 0 0 https://develo
per.apple.co
m/xcode/

3 Xcode
Object
Libraries

Swift UI UI libraries for
personalising
and
customising UI

Additional
software
download

1 99$ one
time cost

29$ yearly
cost

0 (we only need
1 year
subscription)

https://develo
per.apple.co
m/xcode/swift
ui/

UIkit 1 0 0 https://develo
per.apple.co
m/documenta
tion/uikit

4 Excel Application
used to create
algorithm and
compute test
cases

Software
application

1 0 0 https://www.
microsoft.co
m/en-us/micr
osoft-365/exc
el

https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel

5 TestFlight iOS application
testing
software

Software
application

1 0 0 https://develo
per.apple.co
m/testflight/

6 Ipad Device used to
run application
software

Equipment 1 0 0 https://www.a
pple.com/ca/i
pad-air/

- personal
devices for
testing

- Client also
has devices
available for
deploying

7 Mac Device used to
use Xcode

Equipment 5 0 0 https://www.u
ottawa.ca/fac
ulty-arts/facilit
ies-resources

Total product cost (without taxes or shipping)

128$

Total product cost (including taxes and shipping)

144.64$

https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://developer.apple.com/testflight/
https://www.apple.com/ca/ipad-air/
https://www.apple.com/ca/ipad-air/
https://www.apple.com/ca/ipad-air/
https://www.uottawa.ca/faculty-arts/facilities-resources
https://www.uottawa.ca/faculty-arts/facilities-resources
https://www.uottawa.ca/faculty-arts/facilities-resources
https://www.uottawa.ca/faculty-arts/facilities-resources

5.0 Project Risk
Teams must outline a list of the significant project risks and their associated contingency plans
to mitigate the critical risks that are reasonably likely, in addition to the task plan update.

The list below highlights the potential risks that come with building our application. Under each
risk, we have indicated the current solution to the potential issue and a series of contingency
plans in-case our current solution is not feasible.

5.1 Deploying the iOS application to an iPad
The usual way an application is deployed onto an iPad device is through using a developer
account. In our case, it can be released privately to a specific business. The main problem with
this type of application is that access to a developer account requires a $99 service, renewed
annually. It is unclear whether the application will be unusable if the account is deleted after we
complete the project. Because this will take up most of our budget, it would be beneficial to
avoid this cost.

Highlighted in the link below, the solution is to use a workaround method of deploying
the application: https://ionic.io/blog/deploying-to-a-device-without-an-apple-developer-account
This link explains that Xcode can directly deploy an application to a device.

a. Plan A: The apple developer account will be purchased and used to deploy the
application, and the subscription will be deleted after the application is deployed
on the clients device. Supposedly the app will work but can no longer be
redownloaded after the developer account ends the subscription.

b. Plan B: Since the client has workplace iPads, it’s possible they have a free
developer account or enterprise account that could be used to deploy the
application.

c. Plan C: Android Studio will be used instead and the application will be on google
play store. An Android device could be purchased for the client.

5.2 Application Security
With the development of any software or app, there is always a potential risk of security
breaches. Whether it’s improper authentication of users, or vulnerabilities in the app code, there
must be proper protective devices set in place. Because we are creating an iOS app, there is an
increase in risk as, according to a figure outlined by Helen Vakhenko (agile.com, 2023), the
“percentage of errors in app security mechanism” is 74% for iOS, about 17% higher than
Android.

The current plan is to not release the application on the Apple store because it is
possible to create a standalone application that can be placed on a single device. The
instructions are highlighted in the following link:
https://ionic.io/blog/deploying-to-a-device-without-an-apple-developer-account
This should be secure as the app can only be used on a single device, that being the workplace
iPad. This iPad should only be accessible by those with the proper authorization.

https://ionic.io/blog/deploying-to-a-device-without-an-apple-developer-account
https://ionic.io/blog/deploying-to-a-device-without-an-apple-developer-account

d. Plan A: Make the app only accessible after unlocking a password
e. Plan B: Implement a user authorization method that requires client identification

to access application

5.3 Mac availability to use Xcode
Apple computers are needed to use Xcode. Only 2/5 members in our team own macs to use
Xcode. With half our team unable to use Xcode, the process of coding our application would be
too slow of a process to create a feasible design.

The current solution is to gain access to the arts faculty Atelier coFab lab in LRR 218, as
they have a mac computer lab. We will want to get key card access as most of us would need to
work in the lab after the 17:30 closing time. In addition, the Macs don’t have Xcode installed, so
we would need to request that the faculty installs Xcode on the computers.

f. Plan A: Convince the university to give us enough money to rent macs for a
month using a service such as,
https://meetingtomorrow.com/ottawa/computer-rentals/

g. Plan B: Find other IDE that use the same language as Xcode and those without
macs can use them and transfer code to those that have macs for debugging and
testing. Below, we have listed a couple examples:

i. Swift:https://www.swift.org/blog/swift-on-windows/
ii. Objective C:

https://stackoverflow.com/questions/56708/objective-c-for-windows

6.0 Prototype Plans
Below, we have outlined the current plans we have in place for prototyping.

6.1 Tutorial of Xcode Application [Xcode tut]
This will be used for the deploy test.

This prototype will consist of a completed tutorial application using Xcode. It will have basic UI
features and a basic algorithm that allows the user to manipulate various variables and output
desired results.

https://meetingtomorrow.com/ottawa/computer-rentals/
https://www.swift.org/blog/swift-on-windows/
https://stackoverflow.com/questions/56708/objective-c-for-windows

6.2 Excel Algorithm [ExcelA]
This will be used for the algorithm test, as well as to create test cases for the integration test,
when/if successful.

This prototype will consist of an excel spreadsheet that computes the V-curve theory algorithm
and shows all the values, elements and functions needed to produce desired outputs in our
application.

6.3 Pure UI [UI Shell]
This will be used for client UI aesthetics test

This prototype will consist of only the UI portion of the application done with UI libraries and
Xcode. It will not perform any calculation or simulations.

6.4 Integration of UI and Algorithm [R1]
First rendition of application

This prototype will be a first rendition of our application and implement the excel algorithm into
the previous Xcode UI application using Xcode.

6.5 Invalid Input Catching Feature [R2]
Rendition of application that catches invalid inputs

This prototype will be the first rendition of the application with the added feature of catching
invalid inputs using Xcode.

6.6 Multiple Line Simulations Feature [R3]
Rendition of application that can run multiple simulation in different windows
(Full feature rendition)
This will be used for the stress test and the random user test.

This will be the prototype of the application with all of its features, especially the ability to create
and save multiple production lines.

[Figure 1] Flowchart of Basic Prototyping Test Plan

[Figure 2] Full Gantt Chart of Prototype Test Plan
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53

WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA

Team Member:
- Excel Algorithm group: Hanna Paik, Rafiullah Hamdard, Leila Smaili

- UI Design & Xcode group: Marie Levin, Yifei Li

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA

7.0 Prototyping Test Plan

Test ID Test Objective

(Why)

Description of Prototype
used and of Basic Test

Method

(What)

Description of
Results to be

Recorded and how
these results will be

used (How)

Estimated Test
duration and

planned start date

(When)

1 [Deploy Test]

The objective is to
test if we need to
buy a developer
account to deploy
an application for
our client. And test
the feasibility of
using Xcode.

Prototype Xcode tut will
be used.

An application that will
most likely be a tutorial of
how to use/ getting started
with Xcode will be
attempted to be
downloaded on an Ipad
without a developer
account.

Record:
Whether the
application was
successfully
deployed or not is
recorded.(Pass/Fail)

Response:

If the test fails then a
developer account
will be used to deploy
the real thing.

26-27th Feb

2 [Pure UI Test]

The objective of
the test is to make
sure the program
can be interacted
with without issue
before focusing on
its ability to
perform its task.

Test the functionality and
ease of use of the UI.

Prototype UI Shell will be
used.

A prototype of the UI that
does not perform any real
calculations or
simulations.

Record:
Score out of ten of its
ability to stay
formatted and display
the expected
response or change
in UI. (#/10)
Score > 8/10 : pass
Score <8/10 : fail

Response:
Reprogram UI and
Iterate until pass

4 - 7th March

3 [UI aesthetics Test]

The objective is to
test the aesthetics
of the UI with the
user.

Test the aesthetics of the
UI with client feedback.

Prototype UI Shell will be
used.

A picture of the UI will be
sent to the client for
feedback.

Record:
A number from one
to ten will be
recorded on the
client’s likability of the
UI colour scheme,
Formatting and
Aesthetics.
Score > 8/10 : pass
Score <8/10 : fail
Response:
Ask for feedback and
fix the UI. Iterate until
it passes.

6-10th March

Need time for the
Client to respond.

4 [Algorithm Test]

The objective of
this Test is to prove
our ability to
calculate the
optimal speeds
before
implementing it
into the
application.

Test of the algorithm that
predicts the optimal
speeds.

Prototype ExcelA will be
used.

An excel spreadsheet,
that displays all the
elements and functions of
the algorithm and when
given the historical data it
is able to replicate the
optimal speeds within a
small percentage of error.

Record:
The average margin
of error that the
algorithm’s calculated
optimised speeds are
from the historical
data.
Margin of error must
be within 15% for
Pass.

Response:
Edit algorithm and
Iterate until pass

4-7th March

5 [Integration Test]

The objective of
this test is to make
sure that the
display of the input
and output is well
formatted on the
UI.

Test of the algorithm’s
integration into the
UI.Prototype R1 will be
used.

A first rendition of the
application will be created
that includes the UI and
the algorithm working
together, the focus will be
on the formatting of the
input and output numbers
and other variables on the
UI and the ability of the
user to change aspects of
the production line and the
algorithm still calculates
things accordingly to test
cases made from Excel
prototype.

Record:

The Pass or Fail of
the applications
ability to correctly
format the UI and
output correct speeds
of three test cases
derived from the
Excel prototype.

3 Passes = Pass

< 3 Passes = Fail

Response:

Reference working
Excel algorithms and
find out what's
different or causing
problems. Iterate until
3 passes.

9-10th March

6 [Input Error Test]

The objective of
testing wrong
inputs is to make
sure that the inputs
cannot exceed the
max speeds of the
conveyors.

Test of the UI ability to
catch error inputs.

Prototype R2 will be used.

On the second rendition of
the application where
invalid errors are caught,
a comprehensive
collection of bad inputs
will be tested on each
possible place where the
user can do something
wrong.

Record:
Number of invalid
inputs that were
stopped
Number of invalid
inputs that were
accepted
The ratio between
invalid inputs caught
and accepted must
be 90% caught to
pass.
Response: catch
invalid inputs that
were accepted and
iterate until pass

13-14th March

7 [Multiple Tab Test]

The objective of
this test would be
to make sure that
the program is able
to handle multiple
sets of inputs and
display each
accordingly.

Test of the applications
ability to simulate multiple
production lines and save
and load the users edits to
each production line.

Prototype R3 will be used.

On the third rendition of
the application where
multiple lines can be
added. Multiple production
lines will be added to the
application. They will be
edited, saved and loaded
at selected points
throughout a simulated
use of the application.

Record:

Based on the
information of
different production
lines. Three
production lines will
be tested to run on
multiple simulations
at once. If they can
be created, saved
and loaded in the
right places during
regular usage of the
application then the
test is passed.

Response:

Figure out what went
wrong and fix the
code and iterate the
test until it passes.

13-14th March

8 [Stress Test]

The objective of
the test would be
to figure out and
test the limits of
the application so
measures can be
put in place to
make sure that the
user knows the
limit of the
application

A stress test on the
amount of data can be
added to the program
before it loses functionality
or UI formatting.

Prototype R3 will be used.

On the Third rendition of
the application. Production
lines will continuously be
added to the application
until it crashes. Conveyors
and Units will continuously
be added to a single line
until the UI formatting
becomes illegible or the
program crashes.
Extremely large numbers
will be added to the filler
speed or other inputs until
the application crashes or
the UI formatting becomes
illegible.

Record:

The limit to the
number of production
lines, conveyors and
units and numbers
that can be inputted
into the system
before the UI gets
messed up or the
application crashes.

If the limits < the
theoretical values
that would be needed
to run the application
under normal
conditions
(determined from the
information we
gathered for multiple
tab tests) then it fails.

Response:

Find the source of
the data storage limit
and work around or
buy more storage.
Fix how data is saved
and loaded if there is
a formatting issue.
Iterate until pass.

15-16th March

9 [Random Person
Ease of Use Test]

The objective
would be to make
sure that the
program and final
user manual is
comprehensive for
the client.

A test on the ease of use
of random person ability to
follow an instruction
manual and the
application.

Prototype R3 will be used.

The application and a user
manual will be sent to a
person with no knowledge
of beer production. They
will be required to
complete a set of
instructions from the user
manual. They will be
asked to give feedback on
the ease of use.

Record:

The feedback and
the percentage of
tasks that the person
was able to complete
will be recorded.

Response:

Use feedback to
improve the user
manual and UI if
failed. Iterate until
pass.

March 18-20th.

Wrike Snapshot:

For Delivery E:

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=eo7MlRnKuQJ9ATdtvx1LNuX50k

TdlS6v%7CIE2DSNZVHA2DELSTGIYA

For Project Plan:

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53

WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA

8.0 References

Abdulrasool, S. (2020, September 22). Introducing Swift on Windows. Swift.org.

Retrieved February 19, 2023, from https://www.swift.org/blog/swift-on-windows/

Before You Enroll. (n.d.). Apple Developer. Retrieved February 19, 2023, from

https://developer.apple.com/programs/enroll/

Beta Testing Made Simple with TestFlight. (n.d.). Apple Developer. Retrieved February

19, 2023, from https://developer.apple.com/testflight/

CEED. (2022, August 10).☕️. YouTube. Retrieved February 19, 2023, from

https://en.wiki.makerepo.com/wiki/Professional_development/Design_thinking/De

tailed_designs

Facilities and resources | Faculty of Arts. (n.d.). University of Ottawa. Retrieved

February 19, 2023, from https://www.uottawa.ca/faculty-arts/facilities-resources

iPad Air. (n.d.). Apple. Retrieved February 19, 2023, from

https://www.apple.com/ca/ipad-air/

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=eo7MlRnKuQJ9ATdtvx1LNuX50kTdlS6v%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=eo7MlRnKuQJ9ATdtvx1LNuX50kTdlS6v%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=bsq464HdScN5voRvAB3Omv53WJ3De6SF%7CIE2DSNZVHA2DELSTGIYA

Microsoft Excel Spreadsheet Software. (n.d.). Microsoft. Retrieved February 19, 2023,

from https://www.microsoft.com/en-us/microsoft-365/excel

Muramoto, A. (2016, August 2). Deploying to a Device without an Apple Developer

Account. Ionic.io. Retrieved February 19, 2023, from

https://ionic.io/blog/deploying-to-a-device-without-an-apple-developer-account

Objective-C for Windows. (n.d.). Stack Overflow. Retrieved February 19, 2023, from

https://stackoverflow.com/questions/56708/objective-c-for-windows

Ottawa Computer Rentals | Laptops, MacBooks, Chromebooks. (n.d.). Meeting

Tomorrow. Retrieved February 19, 2023, from

https://meetingtomorrow.com/ottawa/computer-rentals/

Vakhnenko, H. (2023). Mobile App Security Risks And Their Impact On Your Business.

Agilie. Retrieved February 19, 2023, from

https://agilie.com/blog/mobile-app-security-risks-and-their-impact-on-your-busine

ss

Xcode 14 Overview. (n.d.). Apple Developer. Retrieved February 19, 2023, from

https://developer.apple.com/xcode/

