Electroplating 3D Printer Design Day GNG5140

Supervisor: Dr. David Bruce

TA: Abu-Bakar Irfan

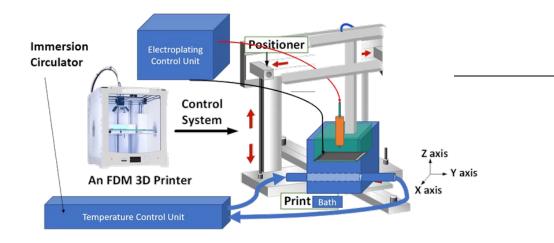
Client Contact: Dr. Kien T.Truong

Team: Hayden Avery – Advanced Mat. Manufacturing Jacob Jurkovich – Chemical Engineering Iragi Marara – Mechanical Engineering

Jacob Jurkovich

Hayden Avery

Iragi Marara


Overview

- Background
- Problem Statement
 - Customer Requirements
- Design Requirements
 - Scope
 - How it changed
- UN Sustainability
- Prototyping
- Final Design

Background & Problem Statement

 This project comes from ECRIT, an initiative started in Vietnam by Dr. David Bruce who was studying hyper hydrophilic surfaces.

Problem Statement:

To develop a 3D electroplating prototype that gives control over the plating area.

Figure 2: Customer Concept

Requirements - Customer

Label	Customer Requirement	Priority
C1	Nickel Plating Capability	5
C2	Precise Movements	5
C3	Hydrogen Bubble Templating (HBT)	5
C4	Easy to maintain	4
C5	Open Source	3
C6	Easy to make/maintain	3
C7	Environmentally Friendly	2
C8	Swappable Components	1

Requirements - Design

Design Requirements	Relation	System	Rating
Utilize Existing 3D Printer	C2 C5 C4 C6	Movement	5
Accurate Current (2A/cm^2)	C1 C3	Plating	5
Contained solution	C6 C7	Pump	5
Precise plating current	C1 C3	Plating	4
Print Speed (X,Y)	C1 C2	Movement	4
Z- Precision	C1 C2	Movement	3
Thin anode and Feed stock precision	C1 C2 C3	Feeder	3
Bed temperature difference	C1 C3	Heating	3
Configurable voltage/current	C5 C8	Plating	2
Feed rate	C1 C4 C7 C8	Feeder	1
Pumping (Fluid out, clean solution, drain)	C4 C6	Pump	1
Bed temperature variance	C1 C3	heating	1

UN Sustainability

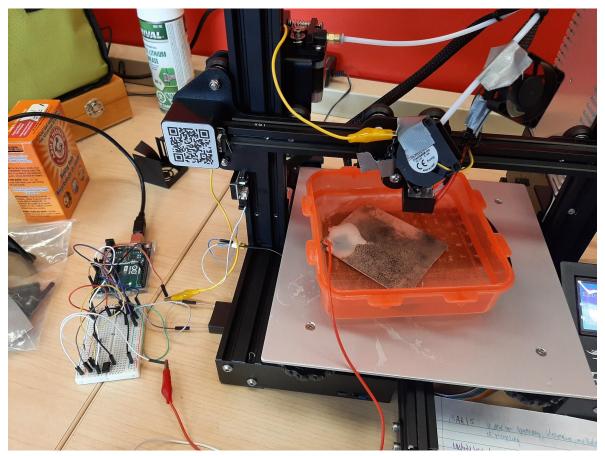
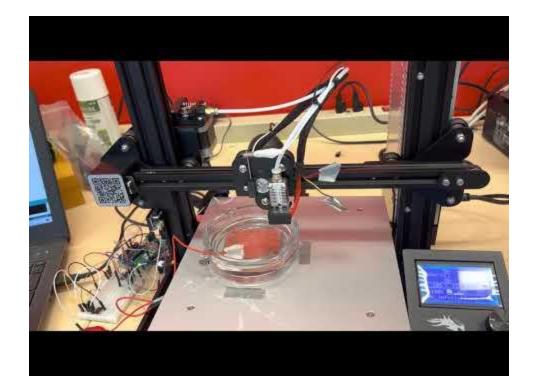


Figure 3: Electroplating printer Prototype #1


Figure 4: Electroplating Printer Final Prototype

Potentiostat_Hold_Current Arduino 1.8.19	💿 COM8
File Edit Sketch Tools Help	I
	Starting potentios
Retentionstat Held Currant	0.98 mA at 2.56 V
	6.35 mA at 3.14 V
<pre>#define targetI 9 //units of mA,</pre>	^ 8.80 mA at 3.60 V
<pre>#define IntervalSize 0.02//units of V, should be approx. multiple of 5/255, a:</pre>	9.29 mA at 3.70 V
	9.78 mA at 3.72 V
<pre>int output, value, ix;</pre>	8.80 mA at 3.70 V
<pre>float Current, outputV;</pre>	8.80 mA at 3.72 V
	8.80 mA at 3.66 V
<pre>void setup() {</pre>	9.29 mA at 3.72 V
<pre>Serial.begin(9600);</pre>	9.29 mA at 3.74 V
<pre>pinMode(6, OUTPUT);</pre>	8.80 mA at 3.68 V
ix = 1;	8.80 mA at 3.74 V
<pre>outputV = 2.0;//starting point</pre>	9.29 mA at 3.76 V
<pre>Serial.print("Starting potentiostat, aiming to hold ");</pre>	9.29 mA at 3.74 V
<pre>Serial.print(targetI);</pre>	8.80 mA at 3.68 V
<pre>Serial.println(" mA");</pre>	8.80 mA at 3.74 V
}	9.29 mA at 3.76 V
	9.29 mA at 3.74 V
void loop() {	9.29 mA at 3.76 V
ix++;	8.80 mA at 3.70 V
<pre>output = (outputV/5)*255;</pre>	8.80 mA at 3.72 V
<pre>analogWrite(6,output);</pre>	9.29 mA at 3.74 V
<pre>delay(33); //give it some time for the system to react</pre>	8.80 mA at 3.72 V
<pre>value = analogRead(A1);</pre>	8.80 mA at 3.74 V
Current = 1000*(value/1023.0)*0.5; //writing the .0 forces it into float ra	9.29 mA at 3.72 V
if(ix==30){ //comment out this line and the matching curly brace top print	
<pre>Serial.print(Current);</pre>	
Serial.print(" mA at "):	~
Done uploading.	

Figure 5: Potentiostat UI

Conclusion and Future Remarks

- We did achieve the expected goal, a successful hydrolysis reaction using a 3D printer has been performed
- There are problems in repeatability and precision, especially with distance of anode/cathode
- We believe this creates ample opportunity for further projects to open up to improve upon:
 - Pumping & heating systems
 - More thorough testing
 - Precision improvements
 - Firmware upgrades

Thank you for Attending

