# Microwave Transfer Device

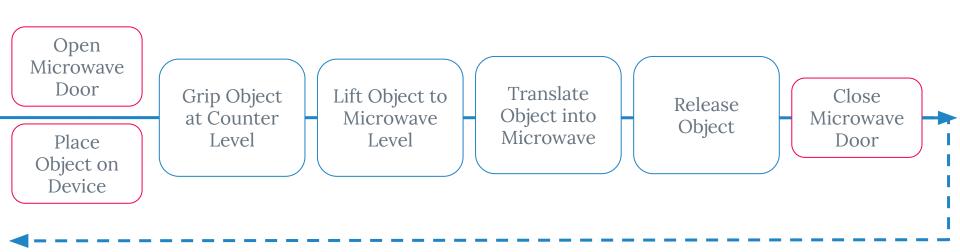
GNG2101 - Group A20

#### Introduction and Customer Needs

# Our client suffers from limited mobility. They require a device that:

- Lifts an object from counter into microwave
- ▷ Is secure, reliable and easy to use
- Can handle different geometries (cups, plates, etc.)
- Is light enough to be transported by hand
- ▶ Can be operated simply and without much effort
- Alerts user when object is safe to remove from device




# Problem Statement

Our client requires a device that can lift objects from their counter into a microwave safely and securely. The device can lift a wide variety of objects without any inconveniencing the user and has built in safety mechanisms to prevent the dropping of an object.

# Design Specifications

| Specification                | Units           | Ideal Value | Marginal Values |
|------------------------------|-----------------|-------------|-----------------|
| Vertical Lift Distance       | in              | >34         | 34              |
| Object Weight                | lbs             | >5          | 3               |
| Budget                       | \$              | >80         | >100            |
| Maximum Object<br>Dimensions | in <sup>2</sup> | 12 x 12     | 11 x 11         |
| Maximum Lift Time            | S               | <10         | <30             |
| Maximum Base Dimensions      | in <sup>2</sup> | ?           | ?               |
| Device Weight                | lbs             | <20         | <30             |

## **Functional Decomposition**

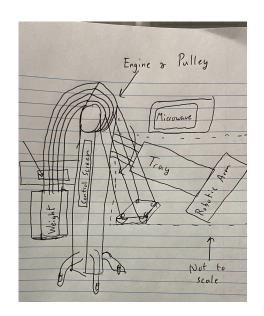


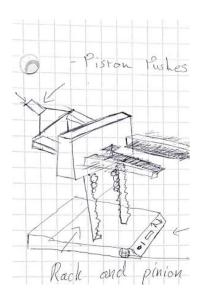
Reverse Process to Retrieve Object

## Benchmarking

Very little on the market designed specifically for microwave transfer

We looked at different types of object lifting and transport devices

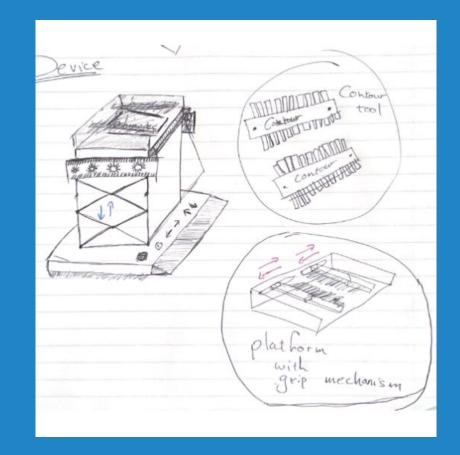



### Concept Generation

# Each team member generated ideas for:

- Vertical Lift
- Horizontal Transfer
- Dish Gripper
- Control Scheme






### Global Concept

# The team's overall design as of Deliverable C

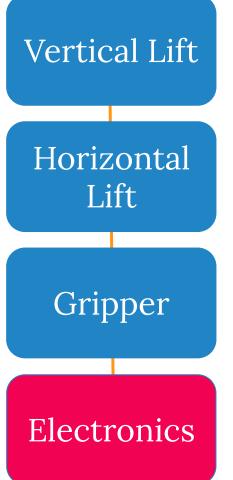
- Vertical Lift: Scissor
- Horizontal Motion: Rack and Pinion
- Gripper: Jaw Mechanism
- Controller: Arduino



#### Client Feedback

Client meeting 2 has been rescheduled multiple times

We have been relying on email communication


| 2021 OCTOBER |        |         |           |          |        |                          |
|--------------|--------|---------|-----------|----------|--------|--------------------------|
| SUNDAY       | MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY                 |
|              |        |         |           |          | 1      | 2                        |
| 3            | 4      | 5       | 6         | 7        | 8      | 9                        |
| 10           | 11     | 12      | 13        | 14       | 15     | 16                       |
| 17           | 18     | 19      | 20        | 21       | 22     | 23                       |
| 24           | 25     | 26      | 27        | 28       | 29     | 30                       |
| 31           |        |         |           |          |        | © BlankCalendarPages.com |

## Prototype 1

Primary Goal: Generate detailed cost estimates for electrical components and the 3 mechanical subsystems

#### This will be done with:

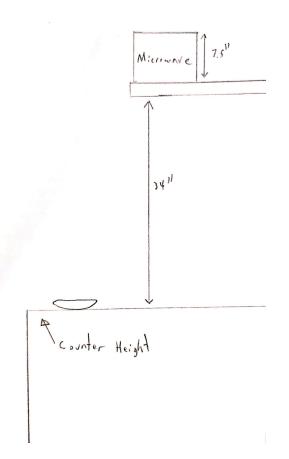
- CAD Models
- Analytical Prototypes
- Researching Part and Material Costs



## **Electrical Components**

- Breadboard
- Cables
- Power Supply
- Buttons/Remote
- Arduino




\$42.70 → Remaining Budget: \$57.30

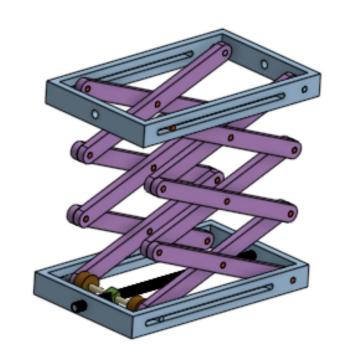


#### Vertical Lift

#### Specifications and Requirements

- Distance: 34"
- Estimated Load: 15\* lbs
- Maximum Lift Time: 30s
- Must Allow Microwave Door to Open
- Be Stable Enough to not Spill Liquids




## Vertical Lift Concept: Scissor Lift

#### Pros:

- Allows for microwave door to open
- Stable Platform
- Compact for transportation

#### Cons:

- Mechanical disadvantage
- Amount of machining/3D printing



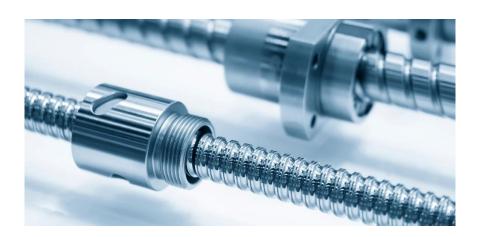
#### Vertical Lift Calculations and BOM

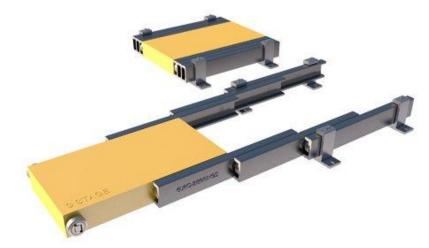
Needs to Push: 46.3\* lbs

Required Torque: 147.0\* oz.in

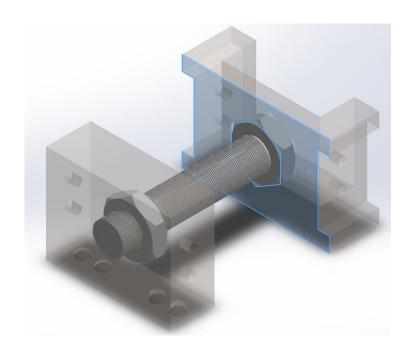
Motor Size: Nema 17 - Nema 23 Stepper Motor



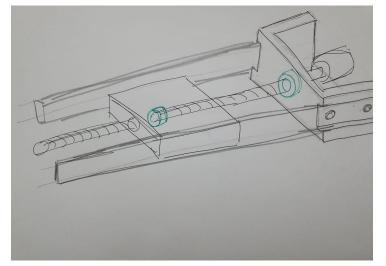




| Part              | Price                 |
|-------------------|-----------------------|
| DC Motor          | \$15-25               |
| Lead Screw        | \$5-10                |
| Nuts              | \$5                   |
| Coupler           | \$10                  |
| Building Material | TBD                   |
| Sum               | Min \$35<br>Max \$50+ |

#### Horizontal Device


- Rack and Pinion
- Threaded Bar

- Microwave Door
- Telescopic Guide






# Horizontal Device Concept & Prototype

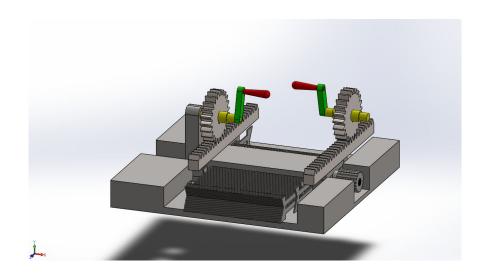


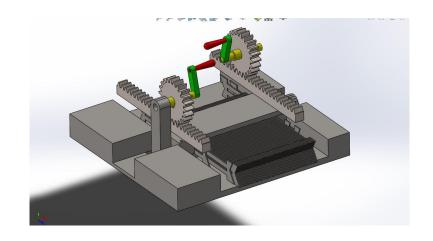




### Horizontal Device BOM

| # | Material/Existing<br>Part                    | Quantity | Total<br>Cost |
|---|----------------------------------------------|----------|---------------|
| 1 | Sheet Metal<br>Screws                        | x2       | \$2.6         |
| 2 | DC Motor                                     | x1       | \$15          |
| 3 | Threaded Steel<br>Rod (Zinc Plated)          | x1       | \$5.5         |
| 4 | Hex Nut (Zinc<br>Plated)                     | x2       | \$2           |
| 5 | Metallic<br>Telescopic Gate<br>(Zinc Plated) | x2       | \$13.5        |
| 6 | Stainless Steel<br>Bar (20 Inches)           | x1       | \$10.06       |


# Gripper


The idea:

The contour gauge tool is used to record the cross-sectional shape of a surface.

Two contour gauges will slide from around the object taking its shape and grabbing onto it. This will secure the object for it to be lifted then put down in the microwave.

### Gripper prototype





#### The works

- -Thin plastic pieces placed next to each other to create a gripping mechanism
- -The plastic are held together with a frame and Knob to tighten the position
- -A rack and pinion is attached on both sides to allow for gripping and release
- -The handles can be replaced with a motor and a shaft running across both gears to create stability



#### Bill of materials

- Most parts can be 3d printed

| Plastic pieces           | 85-120 pcs | free                              |
|--------------------------|------------|-----------------------------------|
| Plastic frames           | 3 pcs      | free                              |
| Gears                    | 2-6        | <10\$                             |
| Motor                    | 1-2        | <10\$                             |
| Rack    PLastic // Metal | 2 pcs      | Plastic   free // Metal   10-25\$ |

### Project Plan

#### In the near future we plan to:

- Get client feedback
- Revise design with client feedback
- Reduce our design cost to \$100
- Order Parts for Prototype 2
- Design electronic controller and UI



# Thank You

Questions?