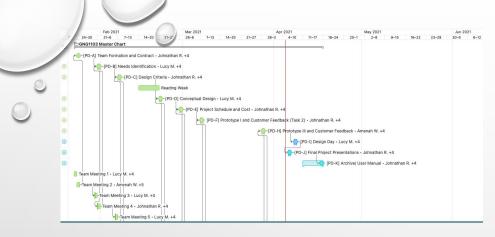


HEATED SIDEWALK 2000

PRESENTED BY: TEAM 5 - MELT-O

Amenah Waheed Lucy McKenzie Thomas Baycroft Krishna Patel Johnathan Rivington

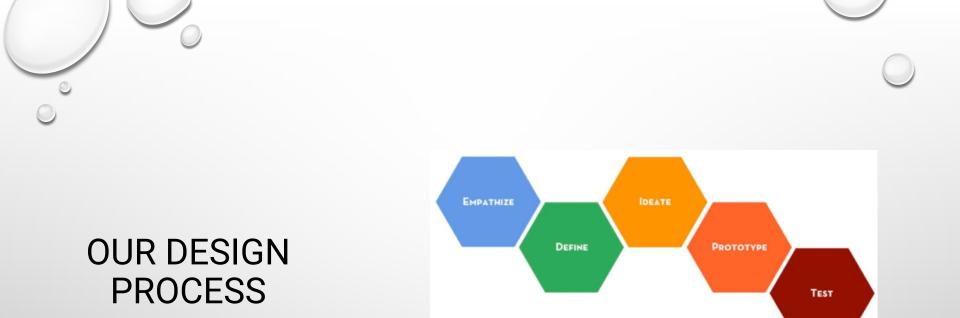
)),


INTRODUCTION

• 1.5 Million CAD for snow removal each year

• Concerns over the impact salt has on the surrounding nature

• Looking for a new alternative


PROJECT PLAN OUTLINE

• Wrike

• Facebook Messenger

• Frequent Zoom Meetings

	NG1103 Master Chart							\$ 0
E	List 🖽 Table … 🖻 Gantt Chart 🕂							
¥	All tasks 👻 By Due date 👻 Expand/Collapse 👻 📔 😁 😅							Export ····
≱	Title	Assignee	Status	Start date	Due date 1	Duration	+	
	Introduction and Conclusion	Amenah Waheed	Completed	31/01/2021	31/01/2021	1d		
	Research about electric systems	Krishna Patel	Completed	31/01/2021	31/01/2021	1d		
	Research about water/glycol systems	Lucy McKenzie, Thomas Baycroft	Completed	31/01/2021	31/01/2021	1d		
	Transferring client meeting 1 notes to interpret	Johnathan Rivington	Completed	31/01/2021	31/01/2021	1d		
	Team Meeting 4	Johnathan Rivington, Krishna Patel,	Completed	31/01/2021	31/01/2021	1d		
	Team Meeting 5	Lucy McKenzie, Thomas Baycroft, Kr	Completed	06/02/2021	06/02/2021	1d		
	✓ [PD-C] Design Criteria	Johnathan Rivington, Krishna Patel,	Completed		07/02/2021			
	Design Criteria	Krishna Patel	Completed	07/02/2021	07/02/2021	1d		
	Design Specifications	Johnathan Rivington	Completed	07/02/2021	07/02/2021	1d		
	Identifying Gaps in Knowledge	Thomas Baycroft	Completed	07/02/2021	07/02/2021	1d		
	Introduction and Conclusion	Amenah Waheed	Completed	07/02/2021	07/02/2021	1d		
	Technical Benchmarking	Lucy McKenzie	Completed	07/02/2021	07/02/2021	1d		
	Team Meeting 6	Johnathan Rivington, Krishna Patel,	Completed	07/02/2021	07/02/2021	1d		
	Total: 46 tasks							

EMPATHIZE

Define user and customers:

- End user: students, staff, faculty members and pedestrians traversing the University of Ottawa campus grounds
- Customer/Client: Jonathan Rousseau from the University of Ottawa (Maintenance Sector)

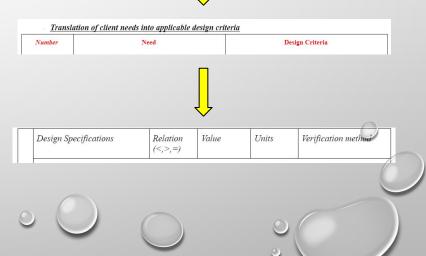
Identification of Customer Needs:

Interpreting Client's Needs from Client Meeting 1

Question	Customer Statement	Interpreted Need	

- Typical uses
- Likes
- Dislikes
- Suggested improvements

User benchmarking:


Specification s			Glycol/Water	r Mixture H	eated Sidew:	alks	
Company/Na me	Hydronics.co m	Therma- Hexx	Hydronic Snowmelt System	SIM Systems	Metrolin x: Glycol Solution Snow Melting System	Lee's Hydronics'	Watts Heatway

Specifications			Electric Heat	ted Sidewalks		
Company Or Name	Roof Heating Systems: RHS Snow Melting Mat/System	Power Blanket: Summer step Home DM24x36C- RES Residential Snow Melting Heated Door Mat	Cozy Products ICE-SNOW Ice-Away Heated Snow Melting Mat	HeatTrak HR20- 60	HOTflake Outdoor Heated Snow Melting Walkway Mat	SEAL Snow Melting Mat

DEFINE

Problem Statement: A solution is needed to quickly and effectively melt snow off of the sidewalks, high traffic areas and emergency exits at the University of Ottawa without compromising safety. The environment must be protected while still allowing this solution to be modular and scalable.

Ranking the Customers Needs by Importance Number Need Importance 5 Drainage system Clear snow/ice off quickly 5 Ability to be deconstructed 4 . Easy to assemble 4 4 5 Easy to maintain 6 Safe to walk on 5 Low cost 2 Safe for the environment 8 4 Ability to keep salt and sand off the surface 9 3 Energy efficient 10 2 11 Storable 2 12 Durable 4

TECHNICAL BENCHMARKING

User	Benchmar	king Glycol/W	ater Mix	ture Heat	ted Sidev	valks Ran	king by Im	portance
Specification s	Importanc e		Glyc	ol/Water M	ixture Hea	ted Sidewall	cs.	
Company or Name	N/A	Hydronics.co m	Therma -Hexx	Hydronic Snowmel t System	SIM System s	Metrolinx : Glycol Solution Snow Melting System	Lee's Hydronics '	Watts Heatwa y

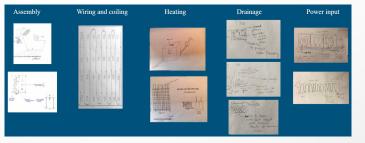
User Ber	chmarking Ele	ectric Heated Si	dewalks Ranking	by Importance	e		
Specifications	Importance		Elect	ric Heated S	idewalks		
Company or Name	N/A	Roof Heating Systems: RHS Snow Melting Mat/System	Power Blanket: Summer step Home DM24x36C- RES Residential Snow Melting Heated Door Mat	Cozy Products ICE- SNOW Ice-Away Heated Snow Melting Mat	HeatTrak HR20-60	HOTflake Outdoor Heated Snow Melting Walkway Mat	SEAL Snow Melting Mat

• Results organised in a simple tricolour ranking system:

Colour Legend for Ranking	Scal
Good = 3	
Average = 2	

- Electric-based system is the most functionable with the requirements and constraints of this project
 - Effectictent installation/removal
 - More cost-efficient
 - Comparatively environmentally friendly

Specifications	Importance			Gly	col/Water Mixture	Heat Sidewalks		
Company or Name	N/A	Hydronics.c om	Therma-Hexx	Hydronic Snowmelt System	SIM Systems	Metrolinx: Glycol Solution Snow Melting System	Lee's Hydronics'	Watts Heatwa
Cost	3	2	1	1	1	1	2	3
Approximate Area	3	2					1	1
Weight	3	1	3					
Tube Dimensions	2	3	3	3	3	3	1	
Tube Material	3	3	3	3	3	2	3	3
Fluid Capacity	2	1.	3	1	1	1	1	1
Panel Dimensions	4		3	1				
Material: Panel or Concrete	4	2	3	2	2	2	2	2
Minimum Thickness	2	1	3	1	1	1	1	1
Insulation Requirements	3	3	3	1	3	3	1	
Connecting Panels/Installat ion	4	2	3	2	2	1	2	2
Maximum Pressure	2	1	3	1	3	3	1	1
Minimum Temperature	2	3	3	3	3	1	1	
Maximum Temperature	2	1	3	1	1			
Requires 👻	4	3	3	3	3	1	3	3
Coil/tubing imbedded in product	3	2	3	3	2	1	1	1
Sensors	3	1	1	1	1	2	1	
Seal Check	3			3	1	1	1	
Oxygen Barrier	4	3		1	3	3	1	
Heating Requirement	4	2		3	2	1	1	3
Operating Conditions	4	1		1	1	2	2	1
Temporary/lon g term	5	2	2	2	2	2	2	2
Pump required	4	3	3	3	3	3	3	3
Total		143	166	136	141	122	115	122

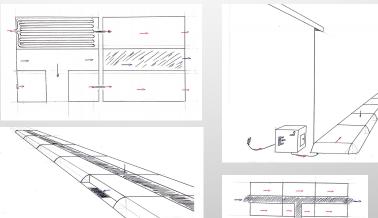

 \circ

Specifications	Importance			Electric Heat Sid	ewalks		
Company Or Name	N/A	Roof Heating Systems: RHS Snow Melting Mat/System	Power Blanket: Summer step Home DM24x36C-RES Residential Snow Melting Heated Door Mat	Cozy Products ICE-SNOW Ice-Away Heated Snow Melting Mat	HeatTrak HR20-60	HOTflake Outdoor Heated Snow Meting Walkway Mat	SEAL Snow Melting Mat
Cost	3	2	1	2	3	1	
Dimensions	3	3		3	2		
Durability	5		2	2	3	3	
Weight (per ft)	3		2	2	2	3	
Multiple sizes	3	3					
Expandable	4		3		3		
Melt rate	4	2	2	2	2	2	
Non-slip surface	5	3	3	3	3	3	
Voltage	3		3	2	3		
Portability	5	3	3	3	3	3	
Power Cord length	2		2	3	2	2	
Customer ratings	3		2	2	3	2	
Temperature range	3	3	3	3	2	3	
On Off options	4		3	3	3		
Stair safe	3		3	3	2	3	
Total		98	124	124	135	110	

Table 4: Technical Benchmarking Electric Heated Sidewalks Ranking by Importance

IDEATE

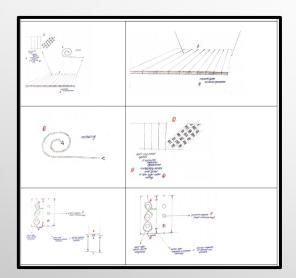
Individual Brainstorming:

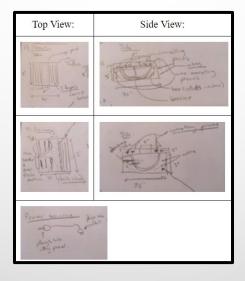


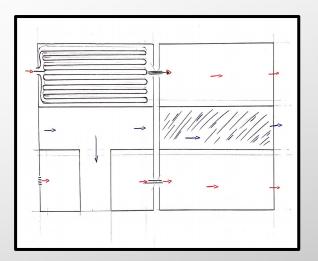
5 subsystems:

- Assembly
- Drainage
- Wire coiling
- Electric control
- Heating

Brainstorm and come up with as many creative solutions as possible


Collective Brainstorming:




3 subsystems:

- Assembly
- Drainage
- Electrical and Heating

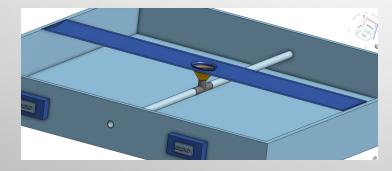
SKETCHING AND DATA ORGANIZATION

Sub	system Analysis
Systems	Analysis

Physical:

Analytical Onshape:

Testing Plan:


		Prototyping Test Plan		
Test ID	Test Objective (Why)	Description of Prototype used and of Basic Test Method (What)	Description of Results to be Recorded and how these results will be used (How)	Estimated Test duration and planned start date (When)

PROTOTYPE

Build a representation of subsystems and acquire feedback in order to proceed to the final solution

Share your prototyped idea with the user and obtain feedback to improve the final design solution

Using the given feedback, we defined the final prototype of our design solution and determined to constraints, weaknesses, future goals and improvements as well as the most valuable areas.

PROJECT TEST PLAN AND SENSOR TESTING RESULTS

Raw data from testing sensors:

Example of our prototype testing plan:

	A	В	С	D	E
1	Temperature (F)	Precipitation	Power State	Deg. C	
2	70	DRY	OFF	21.11111111	=(A2-32)*(5/9)
3	67	DRY	OFF	19.4444444	
4	66	DRY	OFF	18.88888889	
5	62	DRY	OFF	16.66666667	
6	62	DRY	OFF	16.66666667	
7	59	DRY	OFF	15	
8	57	DRY	OFF	13.88888889	
9	56	DRY	OFF	13.33333333	
10	53	DRY	OFF	11.66666667	
11	51	DRY	OFF	10.55555556	
12	50	DRY	OFF	10	
13	48	DRY	OFF	8.888888889	
14	45	DRY	OFF	7.222222222	
15	42	DRY	OFF	5.55555556	
16	41	DRY	OFF	5	
17	39	DRY	OFF	3.888888889	
18	35	DRY	OFF	1.666666667	
19	33	DRY	OFF	0.5555555556	
20	32	WET	ON	0	
21	31	WET	ON	-0.5555555556	
22	29	WET	ON	-1 666666667	

Test ID	Test Objective (Why)	Description of Prototype used and of Basic Test Method (What)	Description of how these re				Estimated Test duration and planned start date (When)
		Prototype 1:	Assembly subsys	stem			
1	Stability of assembly	Determine how much water pressure could the basis structure withstand without any changes to its structural integrity	Dishwaher cycle was run three consecutive times in a row (3 with cold water and 3 with hot water). No started corrotion proof was seen. Edges and assembly remained intact. Physical testing will yield better results as analytically calculating the force at any given point through a cycle would overcomplicate the test			6 hours per water type (hot and cold). 12 hours total (no supervision necessary). Date tested: 03/07/2021	
2	Durability/Stre ngth of material	Using bus bin structure as the basis, withstandable weight was measured by adding circular weights and recording this data. Place weights at the center of the structure and ensure even distribution for accurate results.	Both an analytical and physical test is required to obtain specific measurements. Weight capacity is physically tested for whereas volumetric capacity is calculated from physical measurement. The basis structure withheld 35 pound weight capacity; 4.63 callons volume capacity.			20 minutes to add weights and record data. Date tested: 03/07/2021	
		Prototype	2: Drainage syste				
	Efficiency of drainage system (water in)	Holes were made into the bus bin structure (with heat) and the volume of liquid input was compared to liquid caught as output. **This test is made on an initial prototype	Calculation Input (L)	of results usi Out (L)	ng average % Eff.	5	30 minutes to input liquid at
3		thus the results are approximations** Testing was done 5 times and the average was used in calculations	1 0.99	0.99	99%		the greeting system, record initial and final volumes. Date
			Observed that the water imputed flowed relatively quickly through the grate system created.			tested: 03/07/2021	
_		As the piping has not been shipped from the					

DRAINAGE SYSTEM TESTING RESULTS

- Tested by flowing varying volumes of water through pipes with varying slopes
 - Droplet simulates snowmelt condition
 - 4 L simulates heavy precipitation
- 85% 93% flow collected from entire system
- Minimum flow velocity determined from minimum melt rate (2 in/hr): 43 mm/min

Table 1: Me	easured pipe p	<u>roperties</u>					
	Length			Diameter		Cross-sectional Area	
Pipe	(in)	(mm)	(in)	(mm)	(in2)	(mm2)	
Black	12	304.8	3	76.2	7.07	2280.18	
White	17	431.8	3/4	19.05	0.44	285.02	

Trial #	Volume of water, V, (L)	Time taken for water to flow through the black pipe, t		Flow rate, Q, (L/min)	Flow velocity of droplet, v, (mm/min)
		(s)	(min)		
1	0.001	0.53	0.0088	0.11	49.65

Table 4: Time taken for one droplet of water to travel through the black drainage pipe (2:1 slope)

Freezer was kept at -20°C

0 mins

12 mins

FINAL SPECS AND OVERALL QUALITY

Given the 100 CAD budget, our prototype is of overall good quality.

- Panel/storage dimensions (L x W x H): 18.75 in X 15.5 in X 4 in
- Panel Weight: 5 lbs
- Weight sustained by panel: 0 190 LBS
 - Further testing required to see weight sustained at failure (i.e. max weight)
- Typical heating temperature: 25°C at -20°C surrounding temperature
 - Heating time from 0°C 25°C : 2 min

- Average melt rate of snow/ice: 33 g/min
- Self regulated heating system
- Range of Drainage Rate:
 - Min Tested: 0.032 L/min (Droplet)
 - Max Tested: 23.5 L/min (Heavy Flow)
- Coldest surrounding temperature without affecting function: -40°C
- Cost of one panel: \$82

BOM & BUDGETING

Limitations:

- Budget was maximized by purchasing all the components at once
- Pricing and product availability varies between store locations

Solutions:

- Modified the design to maximize the materials purchased
- Materials purchased stayed within the budget and the design was modified to fit these materials

Part	Material	Quantity / size	Cost (\$)	Picture	Name
Heating system	Heating Wire	9 ft	\$ 28.79	\bigcirc	Heat it HISD 9-feet Pipe Heating Cable https://www.amazon.ca/6-feet-Heating- Cable-Buik- Thermostat/dp/B010ZIK010?tb=1
	Connectors	1	\$ 4.34		Safe-D-Grid 400 Receptacle Housing https://www.andersconpower.com/https/ _us_m2002g2-af_d-gridt-400-receptac housing.html
Sensors	Arduino Temperature Sensor (TMP36)	1	\$ 2.00		Temperature Sensor – TMP3 https://www.robothop.com/ca/en/htmps wei-sensor.tmp35.html
	Arduino Rain Sensor	1	\$ 1.41		Rain Weather Sensor Water Raindrops Detection Module for Ardunio https://www.ebay.com/o/210108492
Drainage System	Gutter	1	\$ 6.89	-	5 in. x 0.5 ft. Bronze Aluminum End with Round Drop Math.5. a. a. 0.5. ft. Const. Aluminum End with Round Jones 100 OPT IEZ/10/471335
	PEX Drainage Tubing	5 ft	\$ 4.48	(SharkBite 3/4 Inch x 5 Feet WHITE PEX PIPE https://www.boundeet.aiproduct/hite bit-1-discus.s.f. feet white perc. prgs/1001015602
	PEX Drainage Tee	1	\$ 3.67		SharkBite 3/4 Inch PEX TEE https://www.homedegot.ck/product/thar te-3-4-mch-pex-tee/1001012288
Shell	Bus Bin	1	\$ 29.78		Rubbernaid Commercial 3349GRA Bus/Utility Tote, 2 x 15 x 5, Gray https://www.maxon.ex.Rubbernaid. Commercial.3349GRA.Unity. TotederB002/KCQ0

BOM Total Cost: \$81.36

Components:	Approximate Cost:		
Heating Wire & Plumbing materials (piping, glue, etc.)	\$60.00		
Plastic Container (base)	\$15.00		
Electrical Components	\$15.00		
Top layer (lid)	N/A		
Total Cost:	\$90.00		

PANEL HEIGHT

Limitations:

- Accessibility onto and off the panel
- Tripping Hazard
- Build up of snow and ice beneath the panel

Solution:

A ramp was created from the excess material used for the top layer

CONTROL BOX

Limitations:

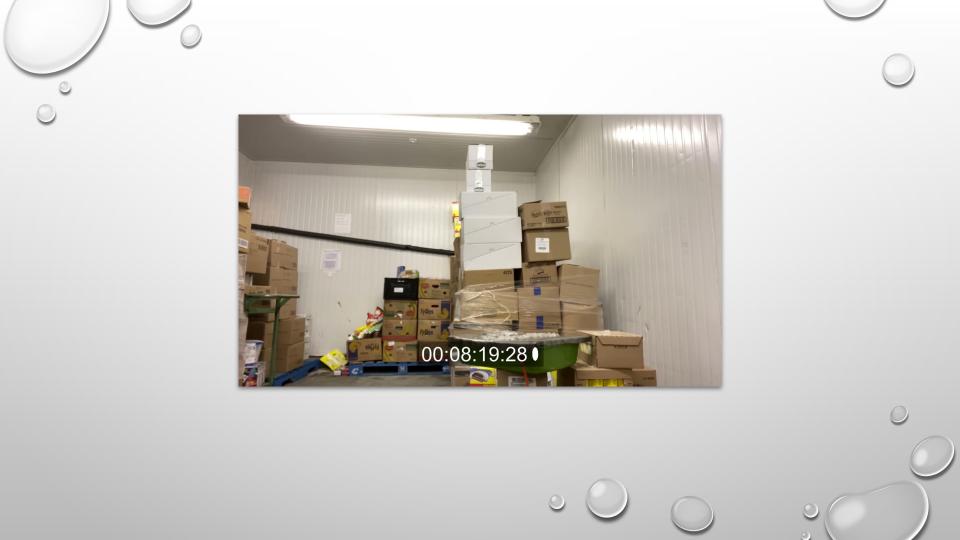
- Box must be above ground
- Risk of inaccurate temperature sensor readings
- Risk of snow and ice accumulation on the box

Solutions:

- Increasing the length of wire between the box and the first panel
- Tested the accuracy of temperature sensor reading
- Mindful placement of the box

CONCLUSION & FUTURE RECOMMENDATIONS

CONCLUSION & FUTURE RECOMMENDATIONS


WITHIN THE BUDGET:

- Updated contingency plans
- Panel height reduced
- Add connector prongs to link to another panel

OUTSIDE THE BUDGET:

- Update the BOM
- 3D print a custom panel
- Bolt the panel onto the sidewalk
- Add rough material (i.e. rubber) on the surface of the panel for increased friction and durability
- Upscaling the panel size to that of a standard sidewalk square

