
i.

Project Deliverable G: Final Prototype Report

Submitted by

[Night Call Bell Team]

[Zizheng Fan, 300161358]

[Yacine Diagne, 7902246]

Date: 31/03/21

University of Ottawa

Table of Contents

Table of Contents ... i

List of Figures ... ii

List of Tables ... iii

List of Acronyms ... iv

1 Introduction ... 5

2 Final Prototype .. 5

2.1 Software Design ... 5

2.1.1 Voice Recognition Module ... 5

2.1.2 Bell Unit Bluetooth Client Module ... 10

2.1.3 Portable Unit Bluetooth Server Module ... 11

2.2 Hardware Design .. 12

2.3 Scalability and Usability .. 15

2.4 Sustainability .. 15

3 Design Day Pitch .. 16

4 Further testing ... 17

5 Conclusions and Recommendations for Future Work .. 18

List of Figures

Figure1: Bell Unit

Figure2: Portable Unit

List of Tables

Table1: Further Testing

List of Acronyms

Acronym Definition

RGB Red, green and blue

LED Light-emitting diode

 5

1 Introduction

In this week's project work, we completed the final testing and improvement work. We used the

voice file sent by the customer to adjust the voice keywords, which greatly improves the

accuracy of recognition. At the same time, the design is further tested according to the

professor's suggestions. Finally, we also held a group meeting and simulation for the upcoming

design day pitch.

2 Final Prototype

2.1 Software Design

2.1.1 Voice Recognition Module

In order to realize the function of voice recognition, we decide to use Speech Recognition

Module of YAHBOOM which is a Chinese company but you actually could buy its products in

North America.

It has already integrated LD3320 chip which provides a speech recognition module based on its

internal MCU. We can directly enter the recognition term and the corresponding serial number of

the entry through I2C, set the mode of the module (loop detection, password trigger, key trigger),

and obtain the identified result, which can be used directly without knowing the internal

processing. And the module is also integrated with a buzzer and a RGB lamp which we can

control its color and set the switch to identify the prompt sound through I2C.

 6

Here, we will show you how our codes function in detail.

#! /usr/bin/python3

import os #command line in system shell

import smbus #transfer data through data bus

import time #control time

bus = smbus.SMBus(1) #set the format of databus

i2c_addr = 0x0f #This is the address of voice_recognition module

asr_add_word_addr = 0x01 #address where to add keywords

asr_mode_addr = 0x02 #address where to set recognition mode, value from 0 to 2, default=0:circle

recognition

asr_rgb_addr = 0x03 #address to set RGB LED,must be 2 bits, the first bit is 1: blue 2: red 3: green, the

second bit is brightness from 0 to 255

asr_rec_gain_addr = 0x04 #address where to set sensitivity，value from 0x40 to 0x55，default=0x40

asr_clear_addr = 0x05 #address where to clear cahce, before input new keywords you must clear the

cache

asr_key_flag = 0x06 #address of the button, only used in button triggering mode.

asr_voice_flag = 0x07 #address where to set if we need an alarm when voice is recognized

 7

asr_result = 0x08 #address where to store our results

asr_buzzer = 0x09 #address to trigger the buzzer, 1: open, 0:close

asr_num_cleck = 0x0a #address where to check the input keyword

we import three modules. “os” is for write command in shell. “smbus” is for controlling data bus.

“time” is for counting time in this code. After finishing this, we can step into the address

definition part. We refer to the official user manual and define the address of each register on the

chip hardware to facilitate the next use. There are a lot of addresses that we didn't use later, but

we wrote them down anyway.

def AsrAddWords(idnum,str):

 global i2c_addr

 global asr_add_word_addr

 words = []

 words.append(idnum)

 for alond_word in str:

 words.append(ord(alond_word)) #convert the chip's voice-converted string into Unicode

 print(words)

 bus.write_i2c_block_data (i2c_addr,asr_add_word_addr,words)

 time.sleep(0.08)

def RGBSet(R,G,B):

 global i2c_addr

 global asr_rgb_addr

 date = []

 date.append(R)

 8

 date.append(G)

 date.append(B)

 print(date)

 bus.write_i2c_block_data (i2c_addr,asr_rgb_addr,date)

def I2CReadByte(reg):

 global i2c_addr

 bus.write_byte (i2c_addr, reg)

 time.sleep(0.05)

 Read_result = bus.read_byte (i2c_addr)

 return Read_result

The first one is keyword_adding_function. It adds the entry sequence number and the keyword

of the entry, this function writes the entry register address to be operated, and then write the

phrase sequence number and the keyword string that identifies the phrase one byte after another

where the append functions. And the ord function is to convert string format to Unicode to

facilitate our comparison

The second one is to control the RGB color of LED

The last function is data_reading_function. This function firstly writes the register value to be

read to the module, that is, what is read here is the detection result, so what is written is the

address value of the result storage register, and then it reads the module to obtain the identified

value. So that we could get a result to check if we detected the keyword. If the keyword has not

been detected, the returned result will be default 255, otherwise, it will be the value you set.

 9

if 0: #only set it as "1" when you input new or change keywords

 bus.write_byte_data(i2c_addr, asr_clear_addr, 0x40)#clear cache

 time.sleep(12) #it will cost at least 10s to clear the cache, so we just wait for finishing

 bus.write_byte_data(i2c_addr, asr_mode_addr, 0x00)

 time.sleep(0.1)

 #this is where you set your keywords

 AsrAddWords(1, "hey yeah hey yeah")

Now, it’s time to go into if_check. This part is to check if there are new keywords needed to be

input in registers or old keywords changed. If there are, we should set the condition to 1,

otherwise, set it to 0, so that we actually could skip this part in daily use.

bus.write_byte_data(i2c_addr, asr_rec_gain_addr, 0x45) #set sensitivity

time.sleep(0.1)

bus.write_byte_data(i2c_addr, asr_voice_flag, 1) #set alarm

time.sleep(0.1)

RGBSet(100,100,100) #set RGB

time.sleep(2)

RGBSet(10,10,10)

while True: #this is the main loop of the code, constantly detecting and judging the voice string.

 result = I2CReadByte(asr_result)

 if(result != 255): #result != 255 means keywords are recognized

 print('triggered!')

 os.system("python3 client_test.py") #from system shell we call another py document to establish

bluetooth connection

 time.sleep(1)

 RGBSet(10,10,10)

 time.sleep(0.5) #which means we detect the voice per 0.5s, this value would affect the accuracy of

voice recognition because of the talking speed of speaker

 10

Finally, this is the main loop which means it is the actually continuously running part of our

code. While True means it will forever be running itself till the end of this world.

When the if notice the gotten result is not default 255 which means the chip just detected our

keyword, it will call another py document which is used to establish Bluetooth connection and

send alarm to portable unit.

2.1.2 Bell Unit Bluetooth Client Module

After multi-comparison, we finally choose bluedot as the module for Bluetooth data

transmission.

#! /usr/bin/python3

from bluedot.btcomm import BluetoothClient

from time import sleep

import os

def data_getit(data):

 print(data)

flag1 = True

while flag1:

 try:

 c = BluetoothClient("B8:27:EB:72:1E:32", data_getit)

 c.send("trigger")

 11

 flag1 = False

 except:

 print("miss!")

As you can see, when establishing Bluetooth communication, we use a while-try loop with flag

to ensure the success of data transmission.

2.1.3 Portable Unit Bluetooth Server Module

Here, we determine to use RPi.GPIO module to control the GPIO of raspberry because they the

best compatibility. Also, Bluetooth communication is realized by bluedot.

#! /usr/bin/python3

import RPi.GPIO as GPIO

from bluedot.btcomm import BluetoothServer

from signal import pause

from time import sleep

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

GPIO.setup(16, GPIO.OUT) #buzzer

GPIO.setup(18, GPIO.OUT) #LED_green

GPIO.setup(22, GPIO.OUT) #LED_Yellow

GPIO.setup(36, GPIO.OUT) #LED_red

This part is to initialize GPIO pins, and tell the raspberry pi which pin is to be used.

 12

def data_received(data):

 if(data == "trigger"):

 print("led on buzzer on")

 GPIO.output(18, 0)

 GPIO.output(36, 1)

 GPIO.output(16, 1)

 GPIO.output(22, 0)

Here, we defined a function which would be run when Bluetooth server has gotten the already

set trigger word “trigger”. In this function, when portable has received the trigger signal from

bell unit, it will turn off green led, and have the buzzer keep beeping, the red led keep shining

until the button on shell is pressed.

2.2 Hardware Design

Figure1: Bell Unit

 13

The ports or modules marked with white arrows here are the parts that users will use in our

product.

It can be seen that the nano-magic tape has excellent performance in pasting. At the same time,

we also use the accessories of the shell to seal the product, so as to ensure that the internal circuit

of the product will not accumulate dust, but also can play some role in waterproof protection.

Figure2: Portable Unit

 14

We have indeed tried various ways to put the LED and buzzer in the shell, but this seems

impossible. Even if the wire is not taken into account, the LED is so big that we could not close

the lid of its shell . And after the buzzer is placed in the shell, the volume of the beep is greatly

reduced, and we are worried that it will not serve as a reminder and warning. Therefore, we

decided to fix it outside the shell with nano-magic tape. Also, we fixed the exposed electronic

devices and made it waterproof.

 15

2.3 Scalability and Usability

Our final product still has strong functional scalability. We can connect the mechanical button at

the GPIO interface and secure it to the top cover. In this way, it can be easily used by the elderly

who are not physically disabled. Because the reliability of mechanical buttons is much higher

than that of speech recognition, this will greatly improve the reliability of our products.

2.4 Sustainability

Our design adopts the shell scheme provided by PiSugar. The electronic devices are almost

seamlessly connected to the shell and are fixed with screws and nuts to ensure that there will not

be any loosening. After the final decision on the product design, we will use hot melt glue to

completely seal the exposed parts of the device so as to achieve the function of waterproof and

durable. At the same time, we will also glue and fix the wire with 502 glue to ensure its

durability.

 16

3 Design Day Pitch

Explain why the problem is relevant (“So What?”)

There are many elder people with disability and they need help.

Explain the basic user requirements (“Who Cares?”)

For those who could not move, voice activation is a better choice.

To facilitate the nurse, we need a light, small, wireless and portable device.

Explain the differentiation in your design or the key aspects that make your product better

(“Why you?”)

Voice triggered, robust wireless connection, faster response, portable and nice-looking hardware

Introduce the topic of the report

 17

4 Further testing

 Testing Results

1 Invite different people (another group

idiom, my parents) to say key words 5

times each person and observe the success

rate of speech recognition

The success rate is still maintained in a high

number which is about 93.3%

2 Test of signal penetrating ability against

the wall

When separated by a wall, the signal strength

is still excellent. When two walls are separated,

the signal strength is seriously affected. We

don't expect the signal to pass through three

walls, but this kind of use is also rare.

Table1: Further Testing

 18

5 Conclusions and Recommendations for Future Work

After the design presentation, we tested and improved our products according to the professor's

questions and suggestions. In the next few weeks, we will study how to expand the scalability of

our products. At the same time, after the final version of the product design is decided, we will

use hot melt glue and 502 glue to completely seal the exposed area of the product, greatly

enhancing its durability, sustainability and water resistance.

 19

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 Final Prototype
	2.1 Software Design
	2.1.1 Voice Recognition Module
	2.1.2 Bell Unit Bluetooth Client Module
	2.1.3 Portable Unit Bluetooth Server Module

	2.2 Hardware Design
	2.3 Scalability and Usability
	2.4 Sustainability

	3 Design Day Pitch
	4 Further testing
	5 Conclusions and Recommendations for Future Work

