Project Progress

Secure Cup Holder

Group Z13
Justin Saikali
Jessica Young Spice
Jieying Yang
François-Nasr Kharrat
Nusaibah Rashid

Presentation Content

- Client Needs
- Problem Statement
- Metrics
- Technical Benchmarking Results and Target Specifications
- Original Concepts and Chosen Concepts
- Detailed Design
- Bill of Materials and Parts List
- Prototype 1 and Testing Results
- Live Demonstration
- Client Meeting 3
- Tasks Schedule

Client Needs (in order of importance)

1. Sturdy, resists to hit
2. Detachable system, easy to install
3. Shouldn't make the wheelchair wider
4. Water-resistant
5. Easily repaired if needed

Problem Statement

Design a strong and removable cup holder to be attached to a wheelchair tray to
prevent a drink from being knocked over. The design should provide value to wheelchair users who often knock over their drink.

Metrics

Metric \#	Metric	Unit
1	Dimension	cm
2	Material heat tolerance	Celsius
3	Force to install/use	N
5	Weight of product	g
6	Assembly/repair time	minutes
7	Cost	S
8	Development Period	Weeks

Technical Benchmarking Results

Metric	Importance	$\begin{aligned} & \text { LÅNESPELARE } \\ & \text { IKEA [1] } \end{aligned}$	Easy to Use Products [2]	W4W Stroller Cup Holder [3]
$\begin{gathered} \text { Cost } \\ \text { (CAD) } \end{gathered}$	3	\$16.99	\$24.99	\$19.95
Material	4	wood veneer, aluminum	ABS plastic, rubber	Silicone, plastic
Durability	5	Very durable	Not durable	Somewhat durable
Dimension	4	Height: 9 cm Width: 11 cm	Height: 14 cm Width: 10 cm	Height: 10.2 cm Width: 10.2 cm
Reliability	5	Very reliable	Reliable	Reliable
Ease of use	5	Very easy to use	Easy to use	Easy to use
Weight	2	340 g	118 g	200 g
Total:		80	50	62

Figure 1. LÅNESPELARE IKEA [1]

Figure 2. Easy To Use Products [2]

Target Specifications

Metric \#	Functional Requirements	Relation	Value	Unit	Verification Method
1	Minimum opening (clamp)	$>$	2.55	cm	Test
1	Cup holder height	$><$	$5-10$	cm	Test
1	Cup holder diameter	$><$	$7.6-8$ $($ approximate)	cm	Test
6	Time to assemble	$<$	15	seconds	Test
Metric \#	Constraints	Relation	Value	Unit	Verification Method
7	Cost	$<$	50	$\$$	Analysis
8	Time to complete project	$=$	14 July 2023 (design day)	Date	Scheduling

Target Specifications

Metric \#	Non-Functional Requirements	Relation	Value	Unit	Verification Method
5	Total weight	$<$	500	g	Test
2,6	Reliability	$>$	2	Years	Test
2,3	Material	$=$	Hydrophobic Sturdy	N/A	Analysis
3,5	Ease of use	N/A	N/A	N/A	Test
1	Total height	$<$	15	cm	Test
1	Total diameter	$<$	12	cm	Test

Original Concepts and Feedback

Chosen Concepts

Detailed Design

1

2

Detailed Design (Dimension Drawings)

Parts List

Part \#	Part Name	Description
1	Cup Holder	3D printed from PLA
2	Long Clamp Arm	Milled from steel flat bar purchased from Metal Pros Ottawa
3	Upper Clamp Arm	Milled from steel flat bar purchased from Metal Pros Ottawa
4	Lower Clamp Arm	Milled from steel flat bar purchased from Metal Pros Ottawa
5	Steel Knurled-Head Thumb Screw	Purchased through McMaster-Carr
6	Neoprene Bumper	Purchased through McMaster-Carr
7	Rubber Pad	Purchased through McMaster-Carr and cut to dimension
8	Neodymium Magnet	Purchased through McMaster-Carr
9	Steel Hex Nut	Purchased from Home Depot

Bill of Materials

Item \#	Part Name	Description	Quantity	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$	Extended Cost
1	Hot Rolled 44W Steel Flat Bar	$1 / 4^{\prime \prime} \times 1^{\prime \prime} \times 12^{\prime \prime}$ metal bar used to make the main body	1	\$6	\$6
2	3D Printed Cup Holder (PLA)	The plastic filament used by the school	140.5 g	\$0	\$0
3	Steel Knurled-Head Thumb Screw	Threaded thumb screw used for the clamp system	1	\$5.69	\$5.69
4	Rubber Bumper	These can be mounted on a threaded stud, in our case it will be mounted on Item 3.	1	\$5.38	5.38 S
5	Disc Magnet	Will be placed on the bottom of cup holder to help secure 3D printed part to the steel	1	\$1.62	\$1.62
6	Multipurpose paint	Spray paint used to coat our 3d printed part (Optional)	1	\$12.81	\$12.81
7	Rubber Sheet	A rubber grip is attached to the metal piece of the clamp system that will be attached to the tray to add friction.	1	\$8.53	\$8.53
8	Hex nut	Used for the clamping system, our threaded thumb screw will pass through it (Item 3)	1	\$0.20	\$0.20
				Total:	\$40.23

Prototype 1

Focused physical prototype of the cup holder subsystem

Purpose:

- Quality check of the 3D print
- Print time
- Fit and function
- Weight
- Strength
- Dimensions and tolerances
- Infill

Prototype 1 - Testing Results

Type of test	Description	Target Specification	Result
1. Weight Test	Measuring the Weight	$<150 \mathrm{~g}$	107 g
2. Print Time	Time to Print	<6 hrs	5 hours 26 minutes
3. Water resistance test	Handwashing with Lukewarm water	N/A	Cup holder is intact after being washed

1

Prototype 1 - Testing Results (Continued)

Type of test	Description	Target Specificat ion	Result
4. Dimension Tolerance Test	Accuracy of 3D printer	+0.5 mm	-0.4 mm for slot $+/-0.2 \mathrm{~mm}$ for diameter
5. Strength Test	longitudinal and diametral compression forces	$5 \mathrm{lbs}<$ $(22.25 \mathrm{~N})$	Withstands 5 lbs of force

Successful Prototype

- Good print quality
- Adequate print time
- Lightweight construction
- Strong part
- Tolerances slightly less desirable (might require post-print modifications)
- Adequate infill, but could be increased for extra strength

Prototype 1.

Live Demonstration

Client Meeting 3

- Presenting prototype 1
- Presenting CAD model of entire product
- Explain metrics to get feedback
- Client feedback and conversation

Tasks Schedule

-PD D: Prototype 1 and Project Progress • Justin S.
-Deliverable D.1: Buying materials for the first prototype \cdot Jessica Young S.

eliyerable D.1: Testing the first prototype • Nusaibah R
Deliverable D.1: Evaluating the first prototype • François-Nasr K.
Deliverable D.1: Making sure the layout of the deliverable document is completed and well formatted • Jieying Y.Deliverable D.2: Creating first half of presentation (summary of our previous deliverables) • Jieying Y.Deliverable D.2: Creating second half of presentation (Information on prototype 1) • Jessica Young S.Deliverable D.3: Making sure everyone has completed peer feedback and team dynamics assessment • Nusaibah R
KPD E: Prototype 2 and Design Contraints • Nusaibah R.
-PD E.1: Identifying:non functional design constraints \cdot Jessica Young S.
-PD E.1: Coming up with solutions to design constraints . Justin S.

1
 PD E.1: Updating the detailed design from deliverable C • François-Nasr K.

E.2: Evaluate performance of prototype 2 based on test results • Nusaibah R.

PD E.2: Making sure the layout of document deliverable is completed and well formatted \cdot Jieying Y .

Questions, Comments, or Feedback

