


step down powe transformer



| А | 1.029       |
|---|-------------|
| В | 0.655+33.9j |
| С | 0.0368      |
| D | 1.029       |





**Transformer for protection** 

Université d'Ottawa Faculté de génie

École de science informatique et de génie électrique



University of Ottawa Faculty of Engineering

School of Electrical Engineering and Computer Science

# ELG4125 Design Module 2

Designing a Solar Farm Submission: October 30, 2022 Group 17

Submitted by: Nima Mehrjoonezhad - 300027431 Kaiy Yuan - 8617972

#### Conductor for overhead 100kV three phase transmission line:

Conductor of choice: ACSR (Aluminum Conductor Steel Reinforced)

- Stranded steel core with one or more layers of high purity aluminum (aluminum 1350) wrapped in a spiral
- Core wires are either galvanized or aluminized which helps protect steel from corrosion
  - Central steel core adds mechanical strength reducing sag
- Steel content range from 6% to 40%
- Can be used for all transmission and distribution purposes

We are using the ACSR 'Cuckoo' conductor which is mostly used for below 132kV transmission lines. 30 aluminum + 7 steel wire.

| Parameters                                     | Value  |
|------------------------------------------------|--------|
| Current Carrying Capacity (amps) @ 75 degree C | 900    |
| Outside Diameter (inches)                      | 1.092  |
| Weight (lbs/kft)                               | 749.9  |
| Rated Voltage (kV)                             | 132    |
| Resistance DC (20°C) (ohms/kft)                | 0.0215 |
| Resistance AC (75°C) (ohms/kft)                | 0.027  |
| Series Inductive Reactance ( $\Omega$ /km)     | 0.339  |
| Shunt Capacitive Reactance (MΩ/km)             | 0.204  |
| Frequency (hertz)                              | 60     |

#### **Tower Selection:**

Tower of choice: Suspension Once Circuit

- Commonly used tower
  - One circuit typically used in Canada
- Forms an inverted Delta
- For 100kV we are assuming the transmission line is medium,, we will be using 100km for calculation purposes.
- Supports conductors vertically

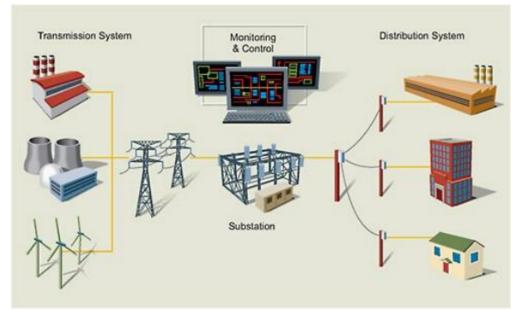
| Parameters         | Values           |
|--------------------|------------------|
| Tower Type         | Suspension       |
| Voltage Range      | 110 kV to 220 kV |
| # of Circuits      | Single Circuit   |
| Configuration Type | Delta            |

| Angle of Line Deviation          | $0^{\circ}$ to $2^{\circ}$ |
|----------------------------------|----------------------------|
| Operating Temperature Range      | 0°C to 75°C                |
| Insulator Type                   | Suspension                 |
| Weight of insulator disk         | 3 KN                       |
| Weight of ground wire attachment | 2KN                        |
| Wind span                        | 300 m                      |
| Weight span                      | 450 m                      |

## Transmission Line Model(ABCD)

| Tesistanee/ Kin(DC) 0.000555222/ Kin |                                           |
|--------------------------------------|-------------------------------------------|
| Resistance of each conductor, R      | 0.00655*100=0.655Ω                        |
| Resistance of each conductor, XL     | 0.339*100=33.9Ω                           |
| Total series impedance, Z            | 0.655Ω+33.9jΩ                             |
| Total shunt admittance, Y            | 1/(0.655Ω+33.9jΩ)=0.0005697-0.0294875jΩ   |
| Receiving end voltage/Phase, VR      | 100000/(sqrt3)=57735V                     |
| Load power factor, PF                | $\cos\phi R = 1$ lagging                  |
| Line current, IR                     | 100 * 10^6 / (3 * 57735 * 1) = 577.35     |
| Α                                    | 1.029                                     |
| В                                    | 0.655+33.9j                               |
| С                                    | 0.0368                                    |
| D                                    | 1.029                                     |
| Sending end Voltage/phase, Vs        | 1.029*57735+0.655*577.35=59787            |
| Sending end Current/phase, Is        | 0.0368*57735+1.5*577.35=2990A             |
| Sending end Power factor, PF         | (57735*1+0.655*577.35)/59787=0.972, 97.2% |
| %age Voltage regulation              | (59787-57735)/57735=0.0355,3.55%          |
| Line loss                            | 3*(577.35^2)*0.655=655kW                  |
| Input power                          | 100000-655=99345kW                        |
|                                      | •                                         |

resistance/km(DC)=0.0065532Ω/km


### Transmission Line and Transformers Protection (against faults and lighting effects) : Transformers:

| Potential Hazard        | Protections                             |
|-------------------------|-----------------------------------------|
| Lightning over voltages | ZnO surge arresters                     |
| Overheating             | temperature control box                 |
| Overcurrent             | IDMT relays                             |
| Earth Fault             | Restricted earth fault protection relay |

#### **Transmission Line**

| Overload and Overcurrent | Circuit Breaker                         |
|--------------------------|-----------------------------------------|
| Earth Fault              | Restricted earth fault protection relay |
| Current Grading          | IDMT relays                             |
| Lighting Strike          | Static Shield Wire                      |

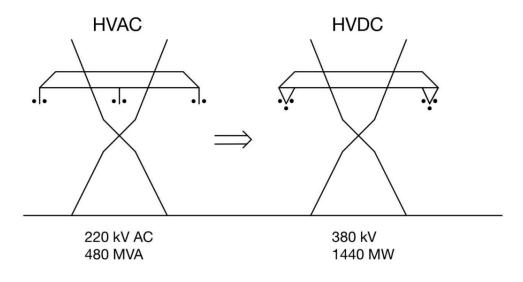
## SCADA System:



| SCADA System | 6NH7997-5CA21-0AA2 Siemens |
|--------------|----------------------------|
|--------------|----------------------------|

| Database Server: For saving real-time data from the network                                                                                 | SR665 Rack Server                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Remote Terminals Units(RTUs): Installed in Solar<br>Plants and Transmission Tower for collecting data from<br>sensors and upload to network | Siemens TELEGYR SYSTEMS TG5700 TG 5700<br>RTU REMOTE TERMINAL UNIT CONTROLLER |
| Master Terminal Units (MTUs): A place in the substation for keeping all servers analyzing Data and controlling all RTUS                     | Substation                                                                    |
| Shunt Capacitor Installed on transmission line                                                                                              | BFAM IEC 60871-1 Rated Capacity:150-500Var                                    |

### **Related IEEE Standard**


- IEEE18-2012, IEEE Standard for Shunt Power Capacitors
- IEEE524-2003, IEEE Guide to the Installation of Overhead Transmission Line Conductors (Revision of IEEE Std 524 1992)

• IEEE 644-1994 (R2008), IEEE Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines

- IEEE Std 824<sup>TM</sup>-2004,IEEE Standard for Series Capacitor Banks in Power Systems
- IEEE 977-2010, IEEE Guide to Installation of Foundations for Transmission Line Structures

• IEEE1048-2003, IEEE Guide for Protective Grounding of Power Lines

# HVAC to HVDC

