Introduction

This assignment's objective is to develop and test our second prototype to ensure it meets the requirements of our test plan. The prototype's results will be documented, and detailed images will be provided. Finally, a test plan will be created for our third prototype in order to set up clear objectives for next week's prototype.

Review of Last Client Meeting

The client was satisfied with our detailed design and prototype one for our project, he said specifically he liked our design, and how it was demonstrated in our presentation. Since the second client meeting, we changed how the brushing system will work and how the rafts will be cleaned. Instead of one brush we will have three, will also created a different way to stack the boards. This was slightly better than our first design, but the client still wasn't completely happy with it. They liked how it was at the end of our system with the bucket, but there was concern over the way it will be pushed out of the stack. We will be looking into this and come up with a plan to show them how it will move out of the stack for design day or in any other way by improving our design.

Prototype 2 Test

Test ID 1, Prototype is a brush head attached to a servo motor.

Prototype 2 type: focused, physical, medium fidelity

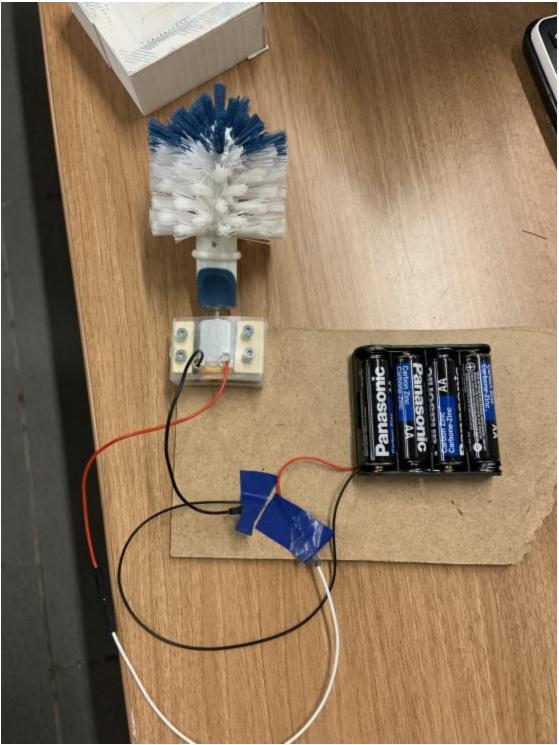
-Focus on one aspect of our system

-Address a critical component

-The total cost for this prototype was \$47.3, but all the pieces from this prototype can be transferred to future prototypes

-Requires: Servo motor, Arduino Uno, female-female wires, male-male connectors, 3D printed test raft piece.

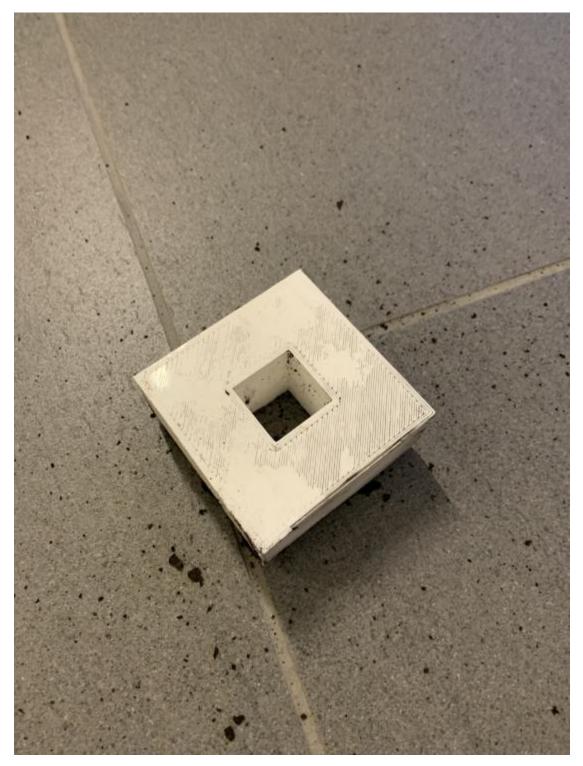
Objectives: To learn how the brushes clean the raft, and to reduce the uncertainty that our brushes will fit and clean dirt off our raft.

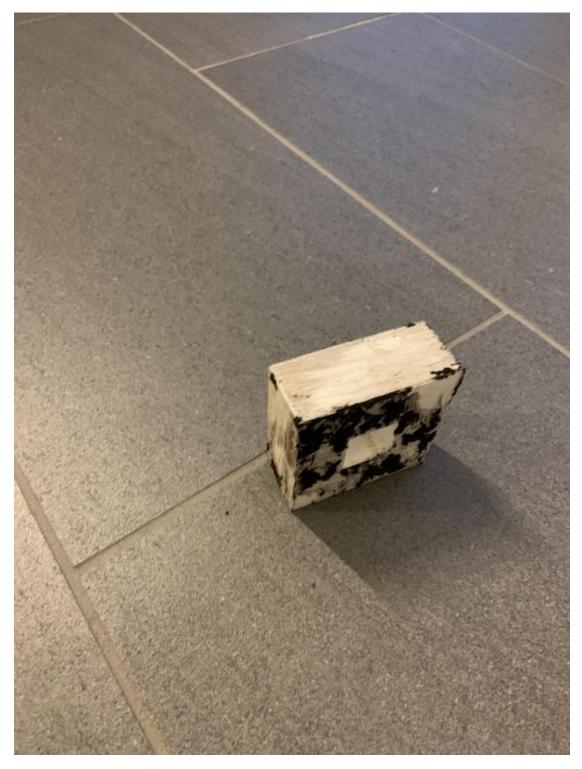

How: We built the prototype. We cut the bush so we only have the head, then bored out the end so we can attach a motor to that. Then we plug the motor into back of 4 batteries, connected all the wires and made sure the motor spun properly. The brush was then attached to the motor. We covered the 3D printed piece in mud, then brought our spinning brush to it to make sure it spun and cleaned the dirt within the hole. Next, we saw how much dirt was left over, this was then our result of the experiment.

Results: It turns out the brush we purchased was too large for the whole. We can still fit the brush into the hole, but it takes too much force to get in. In the future we can use a smaller brush to fit into the holes better, even though the brush we currently have can clean the top, bottom and sides well. The brush spun fast enough to clean all the mud off our 3D printed piece, even though it looks like it's not all clean, some of the mud got into the very small cracks of the 3D printed piece. This would not happen if we used the real raft because it's smooth and doesn't have tiny pieces for dirt or algae to get

into. The brush was also used to clean the sides as well as the bottom. This reduces the uncertainty that our brush system won't clean the system and demonstrates this concept could work. It was also tested the effect of water in the cleaning system, which didn't work well because all the water did was spread the mud all over the board making it still dirty even after it was cleaned. We may need to change where the water is implemented in our system because currently it's before the brushes touch the board, but after reviewing the results of this prototype the water should rinse off excess mud/algae at the end of the system. The client wanted to know if the brush would work properly for cleaning the raft and this should help prove it.

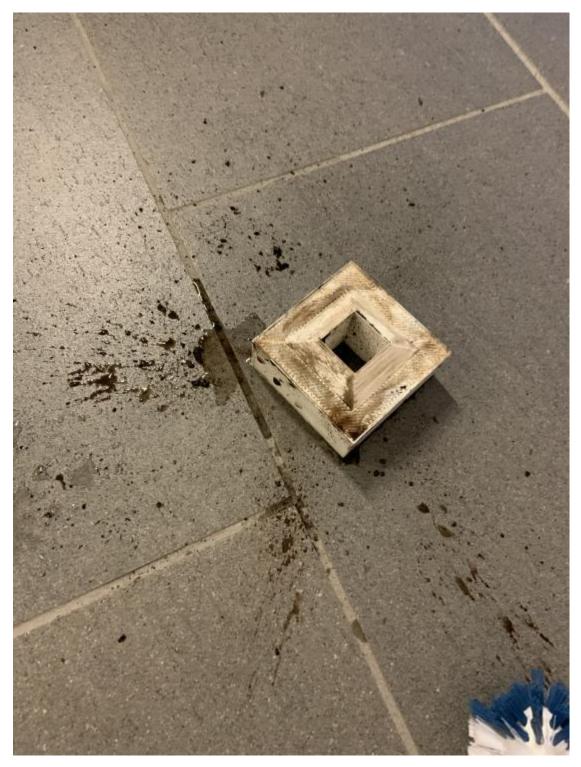
Photos


Prototype 2


Dirty 3D piece bottom

3D Piece after Prototype 2 brush cleaning

3D side dirty


3D side piece after brush cleaning

3D Top Piece dirty

3D Top piece cleaning with water

Bill of Materials was updated (<u>https://docs.google.com/spreadsheets/d/1ICQ2YnYQaJGvfn9f1k6H-oeWfJqrgsRzSLIUE4dv7ek/edit#gid=0</u>)

Project Plan (Green are completed, dependencies can be found on wrike)

Tasks	Duration	Who's Responsible
Prototype 1		
Create test plan	Start 10/21 Due 10/23	Gabe
Plan assembly of prototype	Start 10/21 Due 10/25	Gabe, Sharmarke, Aiden
one including all parts we		
will need		
Gather Materials for	Start 10/23 Due 10/30	Gabe
prototype one		
Assemble Prototype One	Start 10/30 Due 11/2	Gabe, Sharmarke, Aiden
Test Prototype One using	Start 11/3 Due 11/3	Gabe, Sharmarke, Aiden
<mark>our test plan</mark>		
Analyze Test results	Start 11/3 Due 11/5	Gabe, Sharmarke, Aiden
Prototype 2		
Review Feedback from	Start 11/10 Due 11/10	Gabe, Sharmarke, Aiden
prototype one		
Create Test plan	Start 11/1 Due 11/6	Sharmarke
Plan assembly of prototype	Start 10/23 Due 11/7	Gabe, Sharmarke, Aiden
two including all the parts		
we'll need and how we will		
assemble it together		
Gather Materials for	Start 10/23 Due 11/7	Gabe
prototype two		
Create subassembly of	Start 11/6 Due 11/11	Gabe
prototype 2		
Create subassembly of	Start 11/6 Due 11/11	Aiden
prototype 2		
Create subassembly of	Start 11/6 Due 11/11	Sharmarke
prototype 2		
Assemble the whole	Start 11/11 Due 11/12	Gabe, Aiden, Sharmarke
prototype		
Test Prototype Two	Start 11/12 Due 11/12	Gabe, Aiden, Sharmarke
Analyze Test Results	Start 11/13 Due 11/13	Gabe, Aiden, Sharmarke
Prototype 3		
Review Feedback from	Start 11/17 Due 11/17	Gabe, Aiden, Sharmarke
prototype two		
Create Test Plan	Start 11/11 Due 11/14	Aiden
Plan assembly of prototype	Start 10/23 Due 11/16	Gabe, Aiden, Sharmarke
three including all the parts	Start 10/25 Due 11/10	Gabe, Alden, Sharmarke
we'll need and how we will		
assemble it together		
assemble it together		
Gather Materials for	Start 10/23 Due 11/16	Gabe
Gather Materials for prototype three	Start 10/23 Due 11/16	Gabe

Assemble the prototype	Start 11/16 Due 11/26	Gabe, Aiden, Sharmarke
Test Final Prototype	Start 11/27 Due 11/27	Gabe, Aiden, Sharmarke
Analyze Final Prototype	Start 11/27 Due 11/27	Gabe, Aiden, Sharmarke

Test Plan Prototype 3

Reasons as to	Focus/Physical	Measurement:	How long it will take:
why we're doing			5
this prototype		The number of	
testing:	 We selected 	times that the	 For this testing it
To see if	this type of	brush went up	will take about one
the brush	prototype for	and down and	hour because this
will clean	the purpose of	the percentage	testing is very
every	focusing on	of how	important to our
single	one aspect of	successful this	project since it is
hole in the	our whole	part of the	the main part that
board	system so that	testing was.	makes the brush
To see if	we can give a	The number of	moves which is
the brush	good time and	times the brush	why we want to
can easily	work to get a	went left and	take our time to get
move left,	satisfying	right and the	good result. We
right, up,	result.	percentage of how successful	will do this testing on November 18 .
and down	Decemination of the	this part of the	on november 18.
without	Description of the	testing was.	What woods to howen
any	prototype:	This	What needs to happen before the test:
problemTo find the	For this toot the first	information will	before the test:
To find the best	For this test the first thing to be testing is if	be recorded on	
programmi	the brush moves left	a spreadsheet	We will need to
ng way	and right. How to test	that shows the	have all the
which will	for this is first having	percentage of	materials (3
make the	the right materials	how successful	metals, 2 motors,
brush go	which are 3 metals , 2	the test was.	and 1 brush) and
inside	motors, and 1	This data will	have all the
from hole	brush. The two	be very useful	equipment(comp
to hole	metals that will be	for us since we	uter) to do the
	standing straight to	want to have	testing.
Background:	help the brush move	an automated	leen g.
	up and down should	brush system	When will the result be
	have a dimension of	that cleans the	available:
There will be	2x2x5 inches. The	raft and for this	
motors that will	metal that laid	to happen, we	The result will be available
make the brush	horizontally should	want a good	before our next deliverable
move left to right	have a dimension of	result.	is due (November 20). We
and one that	32 inches (length), 2		want to get the result

makes the brush	inches (width), 2	ls it	before we do any other
spin. There will be	inches(height). The	consistent	project work since our next
materials that will	metals will be	with our	prototype and our final
suppose the	connected just like a	defined	solution depends on this
brush to move	bridge and should be	objectives?	result. The result be will
left/right and	connect just like a 3D		available in time to make
up/down. Two	printer. Every metal	Yes, this is	difference to our project.
metals or plastic	will help the motors to	consistent with	
will stand straight	be connected to the	our defined	
to help the motor	brush. Two motors	objectives for	
make the brush	will be needed, one	this testing.	
go up and down.	for making the brush		
Another metal or	move left and right,		
plastic will be laid	and one for moving		
horizontally so	the brush up and		
that the motor	down. The motor		
could help the	should be		
brush move left to	programmed through		
right. This system	applications such as		
will be similar to	Arduino.		
a 3D printer.			
	Cost/Will it Work:		
Learning/De-			
risking:			
	 Estimated 		
We want to learn	cost, \$20 for		
if our prediction of	all materials.		
this part of the	From our		
system will work	perspective,		
and if our plan will	we have all		
succeed. We	the required		
want to learn if	materials,		
this will work or	skills, and		
not and the	plan to make		
reasons why it	this testing		
will or not work.	work.		
This is also for			
de-risking since			
doing this			
prototype test will			
help us have a			
better solution to			
our problem			
statement and			
make our final			
solution be more			
successful.			
Results:			
Results:			

The result will be placed on a spreadsheet that will include all the data that we got from this prototype testing. The spreadsheet will include how accurate the brush is : if the brush will go inside of every hole and if it moves left to right and up/down. Better way of doing the testing:		
There isn't any better way we can do this testing since this is probably the best test plan that we came up with for this prototype. This testing plan has less cost, fewer materials, and a better way of achieving good results.		
Criteria for success:		
The brush can move left and right, up and down without any problem.		

Conclusion

We can conclude this prototype test to be successful. Our brush system was able to thoroughly clean the surfaces of the raft with little difficulties. However, the brush could barely fit into the hole, let alone spin once it gets inside. In the future it will be required to use a stronger 12V DC motor to power the brush.