Introduction

The objective of the assignment is to develop the first prototype using the feedback we have received from client meeting 2. The first prototype will be tested and documented using components from our bill of materials and detailed images to make sure the prototype achieves the objectives we created in the prototype 1 test plan. Finally, a prototype test plan for prototype 2 will be created to gain a better understand of the materials we need and the objective of the prototype.

Review of last client meeting

Overall, the client was satisfied with our concept for our final solutions and agreed with our main subsystems. There were some improvements they suggested for some of our concepts and ideas that we will investigate further to come up with solutions for. They thought our height was too small, which it was, and we discussed height limits with them, our original height was small because we were unsure of how high or low our device should be. Now we have a better idea of how high our final concept will be from our detailed design concept which we created after the meeting. There were also concerns from the client that our device would get stuck in a board if somebody pulled the power to the machine or if the power out, and suggested we include some sort of home system which brings the drill head back to a "home" position. We did not think of this situation at first but now we know that that is a concern of the client, and we will try and accommodate that new need. In our concept we were uncertain how we will stack the boards at the end, we asked the client about different ideas we had, and we decided after some feedback that stacking them at the end is the best idea. At first, we also didn't have anything to clean the sides of the board, but in further design choices we will find a way to clean them because otherwise our device doesn't meet our most important functional need of cleaning the board. The client thought our idea for a moving drill head and spinning wheel automation system wasn't bad so we will continue with that idea and try to further prove how it will work in more prototypes, such as prototype 1 will try and reduce the uncertainty of how our automation system will push the boards through our entire cleaning device.

Test ID	Test Objective (Why)	Description of Prototype used and of Basic Test Method (What)	Description of Results to be Recorded and how these results will be used (How)	Estimated Test duration and planned start date (When)
1	Verify if our 3-inch	Prototype type:	Test number of	This test should
	diameter wheels	Focused and Physical.	times wheels	take about an
	properly grip the raft	We selected this type	successfully grips	hour on
	as it comes out of because we want to		raft and moves it	November 5.
	the dirty pile and	focus on only one	32 inches. Wheel	Before the test
	moves the raft	aspect of our whole	performance will	can occur, we
	forward. Based on	system to ensure it	be tested when	require: Our
	the results of this	works. It is to early in	the wheels are	finished

Prototype 1 Test Plan and Results/Answers

				· · · · · · · · · · · · · · · · · · ·
	test we will find out if we require larger wheels, a more powerful motor for the wheels and/or different wheel placement. This test reduces uncertainty surrounding how the boards will move through the system and go out of the stack we have them in at the start. <i>Criteria for success:</i> Question: wheels contact the raft on both sides and moves the raft 32 inches without losing contact. Analysis: The prototype was lower fidelity, but it was focused and physical. It reduced uncertainty that our wheels wouldn't properly grip our boards and push it through the system	the prototype stage to do a comprehensive prototype covering all aspects. We will require 2 spinning rubber wheels of 3- inch diameter, the raft as well as two stepper motors that will rotate the wheels. We will fix the stepper motors on a wooden surface to make sure the wheels stay in place as the raft moves between the 2 wheels. Estimated cost: \$40 for the motors, Arduino and wiring Actual Cost: \$0 all parts were found around the house	wet and dry. The number of times the wheels successfully grip the raft in wet and dry conditions will be recorded in a spreadsheet. The distance the board moves will also be recorded. This data will be important because the wheels are the ones moving the board through the cleaning system and out the other end of the machine to the clean side of the table.	prototype 1, which should have two spinning wheels that are controlled by two motors, and a measuring device to calculate distance moved. The results of the test will be available in time to make a difference in the project (we are testing 1 month before the final solution is due).
2	At the beginning of our cleaning system the user will place a stack of dirty boards on the table. Our objective will be to test if a 6-inch rigid object attached to a servo motor will spin when the motor rotates and if the has enough power from	Prototype type: focused and physical. We selected this type because we want to focus on only one aspect of our whole system to ensure it works. Its to early in the prototype stage to do a comprehensive prototype covering all aspects. We can also	We measure if the spinning piece can move the raft 6 inches forward (distance where the 3-inch spinning wheels should grip the raft). We will record the information. One column will have	30 minutes; November 5. Before the test can occur, we needed all of prototype to be done. The results of the test are available in time to make a difference in the solution because

the motor to push	do this test analytically	the distance the	we will still have
the bottom raft from	by calculating the	bottom raft	1 month to
the stack to the	force the top boards	moved (in inches)	revise future
rotating wheels. This	exert on the bottom	and the second	prototypes and
test will allow us to	one and than	column will have	change our
learn about the	calculating the force	the number of	concept.
capabilities of a	the ridge object exerts	rafts that were	
stepper motor and	on the bottom board	stacked on the	
this prototype can	and make sure	bottom raft to see	
also help us	through calculations	if there is a	
communicate our	this force is greater	correlation	
automation idea	than the force of the	between distance	
better to the client. If	top rafts+ force of	the raft moves	
the test isn't	friction. We will	and the increase	
successful, we need	require one stepper	in stacked	
to rethink the type of	motor, 5-10 objects of	rafts=>higher	
motor we use, or the	similar shape, size and	weight. This is	
type/length of object	weight of the raft (if	consistent with	
attached to the	we don't have access	our objective.	
motor that is pushing	to the actual raft).	-	
the bottom raft. This	We will need to mount		
will also help with	the stepper on a fixed		
letting us know how	surface, attach the		
many boards we can	wooden object to the		
stack on the device,	stepper motor and		
so it'll still work.	place the stack of rafts		
Success criteria:	in front of this system.		
Question: Bottom	Estimated cost: \$5 for		
raft is removed from	piece that is attached		
the stack with one	to the motor. The		
rotation of the motor	motors and other		
and the raft moves	wiring will be paid for		
straight.	in other stages of our		
Analysis: The piece	prototyping		
was connected to a			
stepper motor and	Actual Cost: \$0 all		
pushed the board	parts were found		
into the wheels while	around the house		
keeping it straight. It			
was low fidelity, and			
the material was			
different that the			
materials used in the			
proper system so			

there was unneeded		
friction and different		
weight to it.		

Analysis of Prototype 1:

This prototype has 2 main objectives:

- 1. Verifying if a ridged object attached to a stepper motor at the beginning of the cleaning system has enough power from the motor to push the bottom raft from the stack in a straight line until it contacts the rotating wheels.
- 2. Verifying if our two, 1-inch diameter rubber wheels properly grips the raft under wet and dry conditions and move it forwards 32 inches without loosing contact with the raft.

About the prototype:

- Majority is made of wood since it's easily accessible
- Raft (the top wooden board) is raised 2.5 inches from the ground to allow the 3 objects (2 rubber wheels and 1, 3d printed rigid rectangle) attached to the 3 stepper motors to contact the raft properly.
- Two thin(0.5x16.5in) wooden pieces on each side of the raft act as guiding rails to ensure the raft travels in a straight path towards the wheels.
- Motors were also secured to the wooden base board using screws so they wouldn't shift as the motors spin.
- An Arduino and motor shield were used to rotate the motors. Each of the two objectives above were tested individually because a motor shield can only power two stepper motors at a time, and we only have 1 motor shield and 3 stepper motors.

- Objective 1 Results
 - The 3d printed ridged object attached to the stepper motor manages to successfully move the raft until it contacts the wheels.
 - The raft successfully travels in a straight line with the help of the guiding rails attached on each side.
 - However, the more weight added to the raft the harder it is for the servo motor to push the rafts. It seems like the motor seems to struggle having to push more then 12 pounds which is the equivalent of 6 rafts.
 - To solve this problem, we can look for a more powerful motor or try the find a more efficient feeding system (eg. Pushing the top raft instead of the bottom one because the top raft isn't under as much weight).
 - Another solution could be to include a glossier surface for the raft to travel on which would reduce friction because currently this protype has wood sliding on wood which hinder the movement of the raft as it slides towards the wheels.

- Objective 2 Results
 - Both wheels manage to grip the raft successfully when the raft and the wheels are dry and move the raft the full 32-inch distance without losing contact with the board.
 - Under the conditions of wet wheels and raft as well as when there is lots of weight on the bottom raft from the rafts on top the grip of wheels on the board decreases
 - An improvement would be to find a way to reduce the weight the top rafts exert on the bottom raft
 - Another improvement for this problem would be to change the wheel size(larger wheels) and grip quality->refer to picture below


This type of wheel will contact the board not only on the sides but also the top and bottom allowing for improved grip as well as stability as the raft moves through the cleaning system.

Prototype 1: Photos

Bill of Materials was updated (<u>https://docs.google.com/spreadsheets/d/1lCQ2YnYQaJGvfn9f1k6H-oeWfJqrgsRzSLIUE4dv7ek/edit#gid=0</u>)

If I was the client, it would be important for me to know how many boards I can stack on the system and that I know the boards can go through our system unattended by a farmer.

Tasks	Duration	who's Responsible
Prototype 1		
Create test plan	Start 10/21 Due 10/23	Gabe
Plan assembly of prototype	Start 10/21 Due 10/25	Gabe, Sharmarke, Aiden
one including all parts we		
will need		
Gather Materials for	Start 10/23 Due 10/30	Gabe
prototype one		
Assemble Prototype One	Start 10/30 Due 11/2	Gabe, Sharmarke, Aiden
Test Prototype One using	Start 11/3 Due 11/3	Gabe, Sharmarke, Aiden
our test plan		
Analyze Test results	Start 11/3 Due 11/5	Gabe, Sharmarke, Aiden
Prototype 2		
Review Feedback from	Start 11/10 Due 11/10	Gabe, Sharmarke, Aiden
prototype one		
Create Test plan	Start 11/1 Due 11/6	<mark>Sharmarke</mark>
Plan assembly of prototype	Start 10/23 Due 11/7	Gabe, Sharmarke, Aiden
two including all the parts		
we'll need and how we will		
assemble it together		
Gather Materials for	Start 10/23 Due 11/7	Gabe
prototype two		
Create subassembly of	Start 11/6 Due 11/11	Gabe
prototype 2		
Create subassembly of	Start 11/6 Due 11/11	Aiden
prototype 2		
Create subassembly of	Start 11/6 Due 11/11	Sharmarke
prototype 2		
Assemble the whole	Start 11/11 Due 11/12	Gabe, Aiden, Sharmarke
prototype		
Test Prototype Two	Start 11/12 Due 11/12	Gabe, Aiden, Sharmarke
Analyze Test Results	Start 11/13 Due 11/13	Gabe, Aiden, Sharmarke
Prototype 3		
Review Feedback from	Start 11/17 Due 11/17	Gabe, Aiden, Sharmarke
prototype two		
Create Test Plan	Start 11/11 Due 11/14	Aiden
Plan assembly of prototype	Start 10/23 Due 11/16	Gabe, Aiden, Sharmarke
three including all the parts		
we'll need and how we will		

assemble it together

Project Plan (Green are completed, dependencies can be found on wrike) Tasks Duration Who's Responsible

Test Plan for Prototype 2

Test Test Object ID (Why)	tive Prototype (Basic Tes (Wl	hat)	Description of Results to be Recorded and how these results will be used (How)	Estimated Test duration and planned start date (When)
1 The second p our system the will be testing be about if the main brushes the boards. W be doing this testing to see well the brush clean the board the time it take the brushes to clean the board and if one of brushes can inside the board be the one the goes inside t board's holes second brush be the one the cleans the board the last one w the one that the top of the board. Each these brushes be cleaning a of the board we had 3D p This test will learning since want to see to best brushes can fit inside holes and clean the ore the cleans w short time. The the result will	hat we g willthis test will and physica want to only s clean be cleanVe willprototype an way for us to prototype an way for us to physical pro- for this testin will be needing ard, for this testing will be the of some part fit board, 1 bru go inside the sufface of th and another the sufface of th and another the sufface of th and another that cleans the board. Basic board. Basic board but or part since with that can clean an the hole. We mot if the boushe	be focused i i l since we i focus on of our i have the best to have a it totype type it to have a it totype type it for this is and the can in the cally, two is and the cally is or the board, ill need to cally so that is and the cally is or the board and is is to see as can get is or to see and the cally is to see and the cally is or the cally is or that is to see and the cally is or the cally i	The pieces of information that will be measured are: How fast the brushes cleaned a board covered with mud and if the brush fit inside the hole. The performance of the brushes will be tested when the board is covered with wet mud and when it's covered with dry mud. The data that will be gathered is how fast the board got cleaned, how clean the board is, and how well the inside hole is cleaned. This data will be recorded on a spreadsheet. One column of the spreadsheet will have the time it took for the brushes to clean the board, another column will have the percentage of how many times the brushes cleaned the board, and another column will include the overall result of	This test will occur on Thursday, November 10. This test will take about one hour since we want to get the best result we can. We will be needing a drill that makes the brush spin, 3 brushes, 1 servo motor, 10 wires, and a 3D print of part of the board before this testing occurs. The result of this testing will be available on time to create a difference to our project since our project is due more than a month we will be able to make changes to our project. If this testing fails, we will have to change the type of brushes we used or increase how fast the brushes are spinning.

made is that t			this test. This data	
will be a	file to clean the		is important since the most	
spreadsheet f				
that has all the			important thing	
for the testing	· · · · · · · · · · · · · · · · · · ·		that our system	
file will include	5 5,		must do well is the	
time it took fo			cleaning part	
brushes to ge			which is why this	
of the dirt on t			data is needed.	
board and will			Also, this data is	
an observatio		-	important because	
how cleaned t		•	we must do	
board looks w			testing on the	
the time it too	- /		brushes so that at	
Using the file			the end of our	
will help us de			project the client	
if one brush is			is happy that each	
fitting inside the			board is being	
hole and can			cleaned well by	
the boards fas	,		the brushes. This	
and if the othe			is consistent with	
can clean the			our defined	
and bottom. C		,	objectives for the	
for success: T			test.	
brushes clear		cost about		
the dirt on the	+ -			
board in a sho				
amount of tim				
the brush can				
easily fit inside	etne			
hole.				

Conclusion

Our prototype helped us reduce uncertainty in one of our most important subsystems of the device, and our test was successful. We understand how part of our concept works and can reduce the uncertainty that it may not work even though it's a lower fidelity prototype. We now also have a plan for next week on our prototype two and are on track with our project plan all while keeping things reasonably measured.