GNG1103 - Deliverable C - Design Criteria

Team: D1 - Hydroponics 1

The Barriere Lake community has expressed their needs for a self sufficient year-round farming solution. Based on the needs of the client, a set of design criteria must be developed. The design criteria will help to select possible solutions and will give a set of benchmarks that the team will need in the selection for a suitable system. By examining, benchmarking and ranking solutions, we can begin to test what the market has available and set goals for ourselves to accomplish.

The current hydroponic solutions available that meet an abundance of the requirements are listed below in the benchmarking table. Based on the values we assigned to the different criteria, the nutrient film technique appeared to be the best option, this is due to its low cost and solutions to lack of soil and self-sufficiency.

#	Need	Design Criteria	
1	Climate Control	Temperature (C)	
2	Cost Efficient	Cost (\$)	
3	Self-contained	Solar Power (Watts)	
4	Modular	Weight (lbs)	
5	Water Supply	Volume (liters) Rainwater storage tank (liters)	
6	Easy to use	Simple to maintain and use	

2.0 Translating Needs into Design Criteria:

2.1 Benchmarking Data:

Specifications	Hydroponic Site Grow Kit Garden Vegetable Planting System Kit (6-pipe 3-layer)	Viagrow (Deep Water Culture)	AeroGarden Farm Plus Hydroponic Garden	
Cost (\$CAD) \$129		\$281.59	\$899.95	
Weight (lbs)	7.7 kg	20.5 kg	21.6 kg	
Size (m)	100 cm x 50 cm x 100 cm	30.5 x 30.5 x 38.1 (cm)	91.4 x 30.5 x 86.4 cm	
Reservoir Size15-20 L(liters)		144 L	N/A	
Plant Slots54		8	24	
Style Nutrient Film Technique		Deep water culture	Aeroponic	
Modularity Very portable		Very portable Not portab		

2.2 Target Specification Benchmarking:

Specifications	Importance	Hydroponic Site Grow Kit Garden Vegetable Planting System Kit (6-pipe 3-layer)	Viagrow (Deep Water Culture)	AeroGarden Farm Plus Hydroponic Garden
Cost (\$ CAD)	CAD) 4		2	1
Weight (lbs)	2	3	1	3
Size (m)	2	1	3	1

Reservoir Size (liters)	5	3	1	
Plant Slots 5		3	1	2
Style	3	3	2	2
Modularity 4		3	3	1
Total		<u>71</u>	<u>44</u>	

2.3 Engineering Design Specifications:

#	Design Specifications	Relation (=, < or >)	Value	Units	Verification Method
	Functional Requirements				
1	Reservoir			Liters	Test
2	Water	>	20	Liters	Rainwater harvesting
3	Climate Control		0	С	Test
4	Power	>		Watts	Solar Panels
5	Submersible fountain pump	=	yes	N/A	Test
6	Channel for plants to grow	=	yes	N/A	Test
7	Starter cubes/small baskets to start seedlings	=	yes	N/A	Test
8	Return System	=	yes	N/A	Test
	Constraints				
1	Weight	>		lbs	Analysis

2	Cost	<	100	\$	Budget
3	Size	=	6x6	m	Analysis
4	Weather	=	Year round	С	Analysis
5	Animals	=	Yes	N/A	Analysis
6	Electricity	=	No	Watts	Analysis
7	Clean water	=	No	Liters	Analysis
	Non-Functional Requirements				
1	Easy to use	=	yes	N/A	Analysis
2	Variety of plants	=	yes	N/A	Test
3	Product life	>	5	Years	Test
4	Safety: Minimum Pinch Points	=	yes	N/A	Test

Functional Requirements:

- 1. Reservoir
- 2. Water
- 3. Climate/Animal Control
- 4. Power
- 5. Submersible fountain pump
 - Water wheel (spiral pump)
 - Hydraulic ram pump
- 6. Channel for plants to grow
- 7. Starter cubes/small baskets to start seedlings
- 8. Return system to lead nutrient solution back to reservoir

Constraints:

- 1. Weight
- 2. Cost
- 3. Size
- 4. Weather

- 5. Animals
- 6. Electricity
- 7. Clean water

Non-Functional Requirements:

- 1. Easy to use
- 2. Variety of plants
- 3. Product life
- 4. Safety: Minimal Pinch Points

Conclusion:

In the end, it was decided that the preferred style of system was a nutrient film technique(NFT). This technique has many advantages over other systems, including its:

- High modularibility
- Ability to support many plants
- Simple design

In addition to these, NFT is also a very robust system. Unlike wick-based hydroponics and deep-water culture, NFT does not carry a high risk of either drowning or underwatering plants. And unlike drip systems, NFT systems operate on a mass scale, meaning that the user must only monitor 1 dataset regarding factors such as pH levels, mineral concentration, and flow rate. However, this system has some disadvantages, such as:

- Danger of pump failure
 - Pump failure in NFT usually means a quick death of all plants in the system
- High Flow Rate

NFT typically involves a constant flow of water, which must be accommodated for by the piping system

• High Power Usage

NFT's high flow rate means that a lot of power must be used to pump the water continuously. In addition, a secondary pump must also be used to oxygenate the water. This is because the plants are not contained in soil, which typically provides them with dissolved oxygen.