#### Introduction

After reviewing our final solution and our final concept we came up with an outline prototype plan that focuses on one aspect of our whole system. We have created a detailed design drawing that summarizes our final concept, a cost list of the materials that we will be needed, a list of equipment, and a list of significant project risks that helps our plan be more successful. This document goes through the steps we took in order to create an outline prototype plan that will work well for our next prototype.

| Tasks                              | Duration Who's Responsible |                        |  |
|------------------------------------|----------------------------|------------------------|--|
| Prototype 1                        |                            |                        |  |
| Create test plan                   | Start 10/21 Due 10/23 Gabe |                        |  |
| Plan assembly of prototype one     | Start 10/21 Due 10/25      | Gabe, Sharmarke, Aiden |  |
| including all parts we will need   |                            |                        |  |
| Gather Materials for prototype     | Start 10/23 Due 10/30      | Gabe                   |  |
| one                                |                            |                        |  |
| Assemble Prototype One             | Start 10/30 Due 11/2       | Gabe, Sharmarke, Aiden |  |
| Test Prototype One using our       | Start 11/3 Due 11/3        | Gabe, Sharmarke, Aiden |  |
| test plan                          |                            |                        |  |
| Analyze Test results               | Start 11/3 Due 11/5        | Gabe, Sharmarke, Aiden |  |
| Prototype 2                        |                            | -                      |  |
| Review Feedback from               | Start 11/10 Due 11/10      | Gabe, Sharmarke, Aiden |  |
| prototype one                      |                            |                        |  |
| Create Test plan                   | Start 11/1 Due 11/6        | Sharmarke              |  |
| Plan assembly of prototype two     | Start 10/23 Due 11/7       | Gabe, Sharmarke, Aiden |  |
| including all the parts we'll need |                            |                        |  |
| and how we will assemble it        |                            |                        |  |
| together                           |                            |                        |  |
| Gather Materials for prototype     | Start 10/23 Due 11/7       | Gabe                   |  |
| two                                |                            |                        |  |
| Create subassembly of              | Start 11/6 Due 11/11       | Gabe                   |  |
| prototype 2                        |                            |                        |  |
| Create subassembly of              | Start 11/6 Due 11/11       | Aiden                  |  |
| prototype 2                        |                            |                        |  |
| Create subassembly of              | Start 11/6 Due 11/11       | Sharmarke              |  |
| prototype 2                        |                            |                        |  |
| Assemble the whole prototype       | Start 11/11 Due 11/12      | Gabe, Aiden, Sharmarke |  |
| Test Prototype Two                 | Start 11/12 Due 11/12      | Gabe, Aiden, Sharmarke |  |
| Analyze Test Results               | Start 11/13 Due 11/13      | Gabe, Alden, Sharmarke |  |
| Prototype 3                        |                            |                        |  |
| Review Feedback from               | Start 11/17 Due 11/17      | Gabe, Alden, Sharmarke |  |
| prototype two                      |                            | A • 1                  |  |
| Create Test Plan                   | Start 11/11 Due 11/14      | Aiden                  |  |
| Plan assembly of prototype         | Start 10/23 Due 11/16      | Gabe, Alden, Sharmarke |  |
| three including all the parts      |                            |                        |  |
| we il need and now we will         |                            |                        |  |
| assemble it together               |                            |                        |  |

**Project Plan** (Green are milestones, dependencies can be found on wrike)

| Gather Materials for prototype                                                                 | e Start 10/23 Due 11/16 Gabe |                                    |  |
|------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|--|
| three                                                                                          |                              |                                    |  |
| Assemble the prototype                                                                         | Start 11/16 Due 11/26        | Gabe, Aiden, Sharmarke             |  |
| Test Final Prototype                                                                           | Start 11/27 Due 11/27        | Gabe, Aiden, Sharmarke             |  |
| Analyze Final Prototype                                                                        | Start 11/27 Due 11/27        | ' Due 11/27 Gabe, Aiden, Sharmarke |  |
| https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=CzI5z2rNssVHsteFjYtnUSBLlk7wLN |                              |                                    |  |
| Ly%7CIE2DSNZVHA2DELSTGIYA                                                                      |                              |                                    |  |

# Prototype Test Plan 1

| Test<br>ID | Test Objective<br>(Why)                                                                                                                                                                                                                                                                                                                                                                                                                       | Description of<br>Prototype used and of<br>Basic Test Method<br>(What)                                                                                                                                                                                                                                                                                                                                                                                                                                 | Description of<br>Results to be<br>Recorded and<br>how these results<br>will be used                                                                                                                                                                                                                                                                                                        | Estimated Test<br>duration and<br>planned start<br>date<br>(When)                                                                                                                                                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Verify if our 3-inch<br>diameter wheels<br>properly grip the raft<br>as it comes out of<br>the dirty pile and<br>moves the raft<br>forward. Based on<br>the results of this<br>test we will find out<br>if we require larger<br>wheels, a more<br>powerful motor for<br>the wheels and/or<br>different wheel<br>placement. Criteria<br>for success: wheels<br>grip the raft on its<br>sides and moves the<br>raft 32 inches<br>without losing | (What)<br>Prototype type:<br>focused and physical.<br>We selected this type<br>because we want to<br>focus on only one<br>aspect of our whole<br>system to ensure it<br>works. It is to early in<br>the prototype stage to<br>do a comprehensive<br>prototype covering all<br>aspects. We will<br>require 2 spinning<br>rubber wheels of 3-<br>inch diameter, the raft<br>as well as two stepper<br>motors that will rotate<br>the wheels. We will fix<br>the stepper motors on<br>a wooden surface to | will be used<br>(How)<br>Test number of<br>times wheels<br>successfully grips<br>raft and moves it<br>32 inches. Wheel<br>performance will<br>be tested when<br>the raft is wet and<br>dry. The number<br>of times the<br>wheels<br>successfully grip<br>the raft in wet<br>and dry<br>conditions will be<br>recorded in a<br>spreadsheet. This<br>data will be<br>important<br>because the | (When)<br>This test should<br>take about an<br>hour on<br>November 3.<br>Before the test<br>can occur, we<br>require: 2<br>spinning rubber<br>wheels of 3-inch<br>diameter, the<br>raft as well as<br>two stepper<br>motors that will<br>rotate the<br>wheels. The<br>results of the<br>test will be<br>available in time<br>to make a<br>difference in the |
|            | contact with the raft side.                                                                                                                                                                                                                                                                                                                                                                                                                   | make sure the wheels<br>stay in place as the<br>raft moves between<br>the 2 wheels.<br>Estimated cost: \$20<br>for the wheels, motors                                                                                                                                                                                                                                                                                                                                                                  | wheels are the<br>ones moving the<br>board through the<br>cleaning system<br>and out the other<br>end of the                                                                                                                                                                                                                                                                                | project (we are<br>testing 1 month<br>and a half before<br>the final solution<br>is due).                                                                                                                                                                                                                                                                   |

|   |                          |                           | clean side of the  |                      |
|---|--------------------------|---------------------------|--------------------|----------------------|
|   |                          |                           | table.             |                      |
| 2 | At the beginning of      | Prototype type:           | We measure if the  | 30 minutes;          |
|   | our cleaning system      | focused and physical.     | spinning wooden    | November 3.          |
|   | the user will place a    | We selected this type     | piece can move     | Before the test      |
|   | stack of dirty boards    | because we want to        | the raft 6 inches  | can occur, we        |
|   | on the table. Our        | focus on only one         | forward (distance  | need: a servo        |
|   | objective will be to     | aspect of our whole       | where the 3-inch   | motor, 5-10          |
|   | test if a 6-inch rigid   | system to ensure it       | spinning wheels    | rafts, and a piece   |
|   | object (like wood)       | works. Its to early in    | should grip the    | of wood. The         |
|   | attached to a servo      | the prototype stage to    | raft). We will     | results of the       |
|   | motor will spin when     | do a comprehensive        | record the         | test will be         |
|   | the motor rotates        | prototype covering all    | information in a   | available in time    |
|   | and if the has           | aspects. We can also      | spreadsheet. One   | to make a            |
|   | enough power from        | do this test analytically | column of the      | difference in the    |
|   | the motor to push        | by calculating the        | spreadsheet will   | solution because     |
|   | the bottom raft from     | force the top boards      | have the distance  | we will still have   |
|   | the stack to the         | exert on the bottom       | the bottom raft    | 1 month and a        |
|   | rotating wheels. This    | one and than              | moved (in inches)  | half to order new    |
|   | test will allow us to    | calculating the force     | and the second     | parts. If test isn't |
|   | learn about the          | the ridge wooden          | column will have   | successful, we       |
|   | capabilities of a        | object exerts on the      | the number of      | will rethink the     |
|   | servo motor and this     | bottom board and          | rafts that were    | type of motor        |
|   | prototype can also       | make sure through         | stacked on the     | and/or change        |
|   | help us communicate      | calculations this force   | bottom raft to see | the spinning         |
|   | our automation idea      | is greater than the       | if there is a      | object attached      |
|   | better to the client. If | force of the top rafts+   | correlation        | to the motor         |
|   | the test isn't           | force of friction. We     | between distance   | from wood to         |
|   | successful, we need      | will require one servo    | the raft moves     | something else.      |
|   | to rethink the type of   | motor, 5-10 objects of    | and the increase   |                      |
|   | motor we use, or the     | similar shape, size and   | in stacked         |                      |
|   | type/length of object    | weight of the raft (if    | rafts=>higher      |                      |
|   | attached to the          | we don't have access      | weight. This is    |                      |
|   | motor that is pushing    | to the actual raft).      | consistent with    |                      |
|   | the bottom raft.         | We will need to           | our objective.     |                      |
|   | Success criteria:        | mount the servo on a      |                    |                      |
|   | Bottom raft is           | board, attach the         |                    |                      |
|   | removed from the         | wooden object to the      |                    |                      |
|   | stack with one           | servo and place the       |                    |                      |
|   | rotation of the motor    | stack of rafts in front   |                    |                      |
|   | and the raft moves       | of this system.           |                    |                      |
|   | straight, successfully   | Estimated cost: \$10      |                    |                      |
|   | contacting both          | for servo and wood.       |                    |                      |
|   | spinning rubber          |                           |                    |                      |

| wheels which then |  |  |
|-------------------|--|--|
| move the board    |  |  |
| forward.          |  |  |

## Bill of Materials and List of Equipment

https://docs.google.com/spreadsheets/d/1lCQ2YnYQaJGvfn9f1k6HoeWfJqrgsRzSLIUE4dv7ek/edit#gid=0

# Project Risks

| Types of project risks                         | Severity | Likelihood | Mitigation/Contingency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technology                                     | High     | low        | We should look out for this risk since it can<br>significantly impact our test plan. An example<br>could be not using the best programming code<br>that could program the motor in the way our team<br>wanted. Using Arduino would be a great choice for<br>programming the motor and can reduce the<br>problems that we could have with the motor.                                                                                                                                                                                                                                                               |
| Cost                                           | High     | Medium     | If in the future we decided to replace some<br>materials that we don't want with a more useful<br>material that fits well into our project but doesn't<br>cost the same as the replaced material, then we<br>must take into consideration how we should deal<br>with this issue. If we don't carefully fix that issue,<br>that will affect the total cost. One way to fix this<br>problem would be getting rid of materials that cost<br>the same amount of money as the one that is<br>being added and the materials that are getting rid<br>off shouldn't be as important as the one that is<br>replacing them. |
| Unplanned work<br>that must be<br>accommodated | High     | low        | When one of our team members didn't do their<br>work in our project due to them being absent or<br>sick then we should be capable of doing that work<br>on time so that our project succeeds.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Adopt to changes                               | High     | High       | If something goes wrong with our plan, we should<br>be able to make quick changes to our plan. For<br>example, if we realize that something is wrong<br>with the measurement, or some aspect parts don't<br>fit in our system then we should be able to make<br>changes to that.                                                                                                                                                                                                                                                                                                                                  |
| Project<br>assumptions                         | Medium   | Low        | Assuming some parts of our project could be labeled as a risk because the parts that we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **Detailed Design Drawings**

## Spinning Wheel Component



Cleaning Brush Component



