PROTOTYPE II

PRODUCT DEVELOPMENT PROCESS

We developed our team through the contract meeting and then met with the client to get raw data as well as technical user bench marking to produce 13 design criteria. Then we broke the overall mandate down into multiple subsystems to what our system needed to do and then we individually brainstormed the subsystems and stated the pros and cons to determine which one was the best to choose from. Following this, we met as a team to decide on which subsystems had the most pros, worked the best, and was the cheapest and safest.
Following this, we 3D printed miniature versions of parts of our design, such as the drain and plug, and the sample containment unit to gain a physical sense of how they look as well as to run tests. A series of 3D printing hardware issues prevented the ideal CAD models from being physically printed. Further 3D printing of the filtration system was done and the plug was purchased to finalize construction of the sample containment unit and drainage.
We tested the speed of our motor, the cooling system circuitry, and if the drain and plug designs worked together. From there the circuit was assembled and the code was refined further. Soldering was done to increase the portability of the product. In our eyes, Design Day is an excellent opportunity to reflect and see how far we've progressed and the obstacles we have overcome.

RESOURCES USED IN DEVELOPMENT

ltem	Purpose	Cost per Unit (\$)	Qty.	Subtotal (\$)
Arduino Uno	Controlling the sensor, motor,	15.25	1	15.25
Rev3	and cooling components			
12V DC Motor	Rotate propellor to agitate water	4	1	4
Solderless	Prototyping and constructing	5.00	1	5.00
Breadboard	circuits			
Printed circuit	Connecting Arduino to	2.33	1	2.33
board	sensors, motors, & cooling components			
20cm male to	Connect circuitry	0.10	10	1.00
male wires				
N-channel	Allow power transfer	1.95	1	1.95
power MOSFET				
USB A to USB B	Connecting computer to	0.20	1	0.20
Cable for	Arduino			
Arduino Uno				
AAA Battery	Power DC motor	1.00	3	3.00
220 ohm	Set up circuitry	0.95	1	0.95
resistor				
Waterproof	Measure temperature	4.33	1	4.33
temperature				
sensor				
Peltier plates	Remove thermal energy from water	4.00	3	12.00
Heat sinks	Remove thermal energy from	4.00	3	12.00
	Peltier plates			
Battery pack	Connect battery to Arduino and motor	2.50	1	2.50
Plastic rod	Support motor with propellor	0.00	1	0.00
	to spin water			
Propellor	Agitate water during erosion	0.00	1	0.00
	test			
Coffee filter	Filter the eroded elements	0.02	200	3.98
	from the water			

Scale	Measure weight of filter	13.99	1	13.99		
	containing eroded material					
Sample	Contain eroding material	0.00	1	0.00		
containment						
unit						
Compartment	Prevent water from draining	0.00	1	0.00		
separator with	out before test is complete					
built in filter						
Water jug	Contain the setup of the	4.99	1	4.99		
	system					
Aluminum foil	Prevent heat entering the test	1.97	1	1.97		
roll	setup by insulating					
Bowl	Support filtration system &	2.00	1	2.00		
	promote drainage					
Strainer	Filter out larger-size particles	3.00	1	3.00		
TOTAL: \$92.43						

GRAPHICAL RESULTS

Assuming a linear relation of time to eroded material...

Test 1:

At time = o, erosion = o grams.

Conditions: salt water (grams), room temperature water °C.

At time = 2 hours, erosion = grams.

Test 2:

At time = o, erosion = o grams.

Conditions: tap water, cold water °C - °C.

At time = 2 hours, erosion = grams.

DesignOTT Engineers Inc.

GRAPHICAL RESULTS

