

DesignOtt Engineers Inc.

PROTOTYPE II

GNG1103, Section # F, Team # F3

Yusra Hasib Gurshaan Grewal Ahmad Muslat Sendwe Mutantabowa Lauren Olszaniecki

March 10, 2024

Table of Contents

Prototype II Testing Summary	3
Test 1	3
Test 2	4
Test 3	5
Test 4	6
Test 5	6
Prototype III Outline	9
References	10
Appendix A: List of Tasks to be Completed (from Deliverable F)	11
Appendix B: Prototyping Test Plan (from Deliverable F)	12
Appendix C: Temperature Sensor Code	13
Appendix D: Peltier Plate Code	14

Test ID	Test Objective	Description of Prototype	Test Method
1	Assess temperature measurement abilities of Arduino	Connect components to an Arduino and set up as per the prototype	Measure temperature of air, then hold sensor in hand to check that temperature decreases
2	Analyze and test how long it takes and how easy it is to install the sample using a revised design	Generate sample containment unit lid	Time how long it takes to take out a sample, then place another in over multiple trials, and calculate the average expected time.
3	Analyze and test how easy it is to install and remove the plug	Scale model of plug and drainage system	Generate plug and connect to drainage system while filled with water, then pull the plug and time how long it takes to drain.
4	Analytical model: calculate amount of time to decrease volume of sample by 10%	Research from internet, then extrapolate	Find the time at which 10% of the volume would be lost using extrapolation.
5	Assess the physical components of the thermoelectric cooling system	Connect components to an Arduino and set up in a somewhat insulated environment. Test when one cooling component is engaged	Over the course of 20 minutes, the temperature will be measured and recorded every 5 minutes. Recorded temperature values will be analyzed.

Prototype II Testing Summary

Test 1

The objective of this test is to measure the temperature of the testing environment using a

waterproof temperature sensor connected to an Arduino Uno.

The testing will be done by using the code written in the Arduino IDE and building the

temperature sensor circuitry using an Arduino and breadboard.

The testing will be evaluated by testing if the Serial monitor outputs the correct temperature

results.

The results of the testing were successful as the serial monitor would register the temperature of

the sensor every other second.

The proposed test setup was as such:

Tinkercad diagram of temperature sensor with Arduino.

The actual test setup was as such:

Temperature sensor connected to breadboard, with measurements done by Arduino.

Test 2

The objective of this test is to analyze and test how long it takes and how easy it is to install the sample using a revised design.

The testing will be done by generating a sample containment unit lid in an appropriate scale and fitting it onto the existing sample containment unit bottom.

The testing will be evaluated by timing how long it takes to take out a sample, then placing another in over multiple trials, and calculating the average expected time.

The results of the testing were that it takes an average of five seconds to remove the lid, remove the sample, insert a new sample, and close the lid.

The test setup was as such:

Sample contaiment unit with fitted lid.

Test 3

The objective of this test is to analyze how easy it is to install and remove the plug.

The testing will be done by using the test draining system and timing how long it takes to install and take out the plug over multiple trials.

The testing will be evaluated by the time it takes to place the plug inside, securely, then take it fully out. This will be done five times.

The results of the testing were an average of 10 seconds between 5 trials to successfully insert and secure the plug as well as removing the plug.

Test 4

The objective of this test is to calculate the amount of time it takes for the volume of the sample to decrease 10% in volume.

The testing will be done by completing research on how long the sample material takes to lose volume in similar conditions.

The testing will be evaluated later when the project has been built and we can compare the analytical data to the tested results.

The results of the testing were that the sample should take ~7 days to reduce in volume by 10%. The test setup was that research was done on machines that operate similar procedures to our own, as well as sandstone, a material that will be used as the sample. Sandstone is very slow to erode due to water- it is more prone to wind erosion. It is a very porous material, and matter passes through it easily, but when inside the device, with the constant flowing water and the force it carries, the sandstone will not be able to resist erosion as it would be able to in a river or other similar environments.

Test 5

The objective of this test is to assess the physical components of the thermoelectric cooling system: Peltier plates with heat sinks.

The testing will be done by connecting components to an Arduino and setting up the components as per the circuit diagram, in a somewhat insulated environment. Measurements will be recorded when one Peltier plate is engaged.

The testing will be evaluated by data gathered over the course of 20 minutes, during which time the temperature will be measured and recorded every 5 minutes (5 measurements in total per sub-test). Recorded temperature values will be analyzed. Based on the power of one Peltier plate, it can be calculated how much power is needed for the Peltier plates to cool the water during the test.

The results of the testing with one Peltier plate were:

Time (minutes)	Temperature (degrees Celsius)
0	22.6
5	22.3
10	22.1
15	22.1
20	22.0

The proposed test setup was as such:

Tinkercad diagram of circuit.

The actual test setup was as such:

Peltier plate suspended between two wooden rods with tinfoil insulation. The Arduino was programmed to provide the full power of three AAA batteries to the Peltier plate.

Prototype III Outline

Test ID	Test Objective	Description of Prototype used and of Basic Test Method		
1	Solder PCB	From wiring scheme determined from previous prototype, solder the PCB connections and test whether motor operates		
2	Propellor	3D print full size propellor using PETG and attach to motor, confirming rotation of propellor		
3	Determine feasibility of container	Purchase container, fill with water, insulate, and confirm no leakage as well as rate of heat absorption		
4	Assemble lid of test container	Connect Arduino, circuit board, temperature sensors, cooling system, DC motor, and propellor, then confirm whether motor runs or not		
5	Construct drainage system	3D print drainage system with filter & bottom of sample containment unit, filter cover, and plug for stopping water leakage using PETG, then confirm whether water drains and how quickly		
6	Install drainage system into container	Secure the 3D printed system into the test container and observe if there is leakage or not; if so, use hot glue to seal		
7	Install sample containment unit	3D print using PETG and fit lid f sample containment unit		
8	Begin test	Set up system and power to motor, checking on the sample daily to confirm erosion		

References

Fuller, J. (2023). DS18B20 temperature sensor - arduino tutorial. Retrieved from https://www.circuits-diy.com/ds18b20-temperature-sensor-arduino-tutorial/

Ostanin, I., Safonov, A., & Oseledets, I. (2017). Natural Erosion of Sandstone as Shape Optimisation. Scientific Reports, 7(1), 17301-. https://doi.org/10.1038/s41598-017-17777-1

Raj, P., Hloch, S., Tripathi, R., Srivastava, M., Nag, A., Klichová, D., Klich, J., Hromasová, M., Muller, M., Miloslav, L., Chattopadhyaya, S., & Adamcik, P. (2019). Investigation of sandstone erosion by continuous and pulsed water jets. *Journal of Manufacturing Processes*, *42*, 121–130. https://doi.org/10.1016/j.jmapro.2019.04.035

Slavík, M., Bruthans, J., Filippi, M., Schweigstillová, J., Falteisek, L., & Řihošek, J. (2017). Biologically-initiated rock crust on sandstone: Mechanical and hydraulic properties and resistance to erosion. Geomorphology (Amsterdam, Netherlands), 278, 298–313. https://doi.org/10.1016/j.geomorph.2016.09.040

Zhang, J., Deng, H., Taheri, A., Ke, B., Liu, C., & Yang, X. (2018). Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion. Cold Regions Science and Technology, 155, 37–46. https://doi.org/10.1016/j.coldregions.2018.07.007

Appendix A: List of Tasks to be Completed (from Deliverable F)

Task	Description	Name	Due Date
Acquire some raw	Order and bring Arduino, breadboard, wires,		February 27
materials	DC motor, and temperature sensors to		
	campus.		
Write Arduino DC	Write code to turn motor.		February 27
motor code			
Propellor	Design and print small scale propellor (for	Yusra	February 27
	testing purposes).		
Container modeling	Design full-scale and small-scale plastic		February 27
	container, and 3D print small-scale container		
	and lid (for testing purposes).		
Sample containment	Design and 3D print full size sample	Gurshaan	February 27
	containment lid and bottom.		
Write Arduino	Write code to turn on power to cooling	Ahmad	February 28
temperature control	system when water temperature is above a		
code	certain threshold.		
Acquire further raw	Order and bring insulator, container, and	Lauren	February 28
materials	coffee filters.		
Prototype I	Combine successful subsystems to make an		March 3
	initial prototype.		
Improve subsystems	If some subsystems were not included in the		March 3-10
and implement	first prototype, install them and refine the		
additional	ones that did not work.		
requirements			
Prototype II	Construct the second prototype.	All	March 10
Find a place to beginLook around campus and ask professor where		Yusra	March 10
the erosion test	to run test.		
Solder PCB	From wiring scheme determined from	Lauren	March 11
	previous prototype, solder the PCB		
	connections.		
Propellor	3D print full size propellor.	Ahmad	March 12
Construct lid	Connect Arduino, circuit board, temperature	Yusra	March 14
	sensors, cooling system, DC motor, and rod.		
Construct drainage	3D print drainage system with filter & bottom	Gurshaan	March 16
system	of sample containment unit, filter cover, and		
	plug for stopping water leakage.		
Install drainage	Secure the 3D printed system into the test	Sendwe	March 17
system into container	container.		
Install sample	3D print and fit lid onto bottom of sample	Lauren	March 18
containment unit	containment unit.		
Begin test	Set up system and power to motor.	All	March 19

Check on test	Confirm daily that the test is still running		March 19-
	successfully.		
Prototype III	Construct the third prototype.		March 24
Minimal changes	Perform maintenance and change small		March 24-
	details as needed while test is running.		
Calculations	Do calculations to find the expected time to		April 2
	erode based on the speed of the water and		
	amount of force that the water is exerting on		
	the eroding material.		
Final Product	Construct the final product.	All	April 3
Design Day	Generate PowerPoint showcasing the final	All	April 4
Presentation	Presentation product. Its construction, the steps taken to		
	complete it and everything else attached to		
	the process.		
User and Product Type out manual, complete with everything		All	April 10
Manual	needed to know about the product and how to		
	operate it properly.		

Appendix B: Prototyping Test Plan (from Deliverable F)

Test ID	Test Objective	Description of Prototype used and of Basic Test Method	Description of Results to be Recorded and how these results will be used	Estimated Test Duration and Planned Start Date
1	Analyze the overall containment and drainage	Set up the containment system with the fluid and the drainage system in a small-scale model	Qualitative results: whether all the fluid drains out without any remaining inside the container. If not, the design should be modified	15 minutes (10 minutes to fill and 5 to drain). February 26th
2	Test the rotation	Run the Arduino connected to the motor and rod	Any visual or audible signs of fatigue of the motor after 20 minutes of running. If so, a new motor will be selected	30 minutes March 1st
3	Analyze and test how long and how easy it is to install the sample	Generate sample containment unit top and bottom and connect to rod	Sizing of sample container top and bottom. If it doesn't fit together, the CAD model will be modified. Time required for sample installation. If it takes more	10 minutes March 6th

			than 2 minutes, the CAD model will be simplified	
4	Assess the physical components of the cooling system	Connect components to an Arduino and set up the components as per the prototype, in a somewhat insulated environment. Test when all cooling components are engaged, 50% of cooling components are engaged, and 0% are engaged	Over the course of 20 minutes, measure temperature every 5 minutes (5 measurements in total per sub-test). Recorded temperature values will be analyzed. If fluid temperature continues to increase when all components are engaged, add more cooling coils to the final design	1 hour March 8th
5	Adjust rotation speed while motor in operation	Run the Arduino connected to the motor and rod while changing values of speed in the Arduino IDE	Qualitative results: See if the rotation of the blade changes as expected.	10 mins March 12th

Appendix C: Temperature Sensor Code

```
#include<OneWire.h>
#include<DallasTemperature.h>
int pinMotor = 9; //pin number which motor is connected to in the arduino
int speed = 10; //between 0 and 255
const int SENSOR_PIN = 13; // Arduino pin connected to DS18B20 sensor's DQ pin
OneWire oneWire(SENSOR_PIN); // setup a oneWire instance
DallasTemperature tempSensor(&oneWire); // pass oneWire to DallasTemperature
library
float tempCelsius;
void setup()
{
    Serial.begin(9600);
    tempSensor.begin();
}
```

```
pinMode(pinMotor,OUTPUT); //setting pin 9 as the output pin
```

}

```
void loop ()
{
    tempSensor.requestTemperatures(); // send the command to get
temperatures
    tempCelsius = tempSensor.getTempCByIndex(0); // read temperature in Celsius
    Serial.println("Temperature: ");
    Serial.print(tempCelsius); // print the temperature in Celsius
    Serial.print("°C");
    delay(1000);
    analogWrite(pinMotor, speed);
    delay(2000);
}
```

Appendix D: Peltier Plate Code

```
int pinPlate1 = 9; //pin number which plate is connected to in the arduino
int userInput = 1; //default value
int power = 255; //between 0 and 255
void setup(){
  Serial.begin(9600);
  pinMode(pinPlate1,OUTPUT); //setting pin 9 as the output pin
}
void loop () {
  analogWrite(pinPlate1, power);
  delay (30000); //runs for 5 minutes at the given power
  printf("Do you want to continue test?");
  scanf("%d",&userInput);
  if (userInput==0) {
    power=0;
    analogWrite(pinPlate1,power);
    Serial.println("Power off.");
 }
 //if user does not enter 0, the test will run for another 5 minutes
}
```