Hydroponics Group 1

TEAM: Joseph Francis Gabriel Goad 300138333 Alana Leung 300111051 Lucas Piazza 300122443 Weeda Wardak 8171970

Proposed Project

Design and build a hydroponics system for the Algonquin people of Barriere Lake. Due to the lack of running water and electricity in this remote area, the greenhouse and hydroponics system must be self sufficient and easily maintained.

Needs Identification

Rank	Need				
1	Easily maintained				
2	Self sufficient				
3	Self sufficientDurable enough to withstand environment (weather, wildlife, sandy terrain etc.)Low costEasy to transportEasy to transport				
4	Low cost				
5	Easy to transport				
6	Easy to assemble				
7	Controlled water distribution				

The Algonquins of Barriere Lake require a three season greenhouse and hydroponics system that is entirely self-sufficient, easy to maintain, and durable enough to withstand all aspects of the surrounding environment.

Design Criteria

Benchmarking

Specifications	Hydroponic Site Grow Kit Garden Vegetable Planting System Kit (6-pipe 3-layer)	Viagrow (Deep Water Culture)	AeroGarden Farm Plus Hydroponic Garden
Cost (\$CAD)	\$129	\$281.59	\$899.95
Weight (lbs)	7.7 kg	20.5 kg	21.6 kg
Size (m)	100 cm x 50 cm x 100 cm	30.5 x 30.5 x 38.1 (cm)	91.4 x 30.5 x 86.4 cm
Reservoir Size (liters)	15-20 L	144 L	N/A
Plant Slots	54	8	24
Style	Nutrient Film Technique	Deep water culture	Aeroponic
Modularity	Very portable	Very portable	Not portable

Target Specification Benchmarking

Specifications	Importance	Hydroponic Site Grow Kit Garden Vegetable Planting System Kit (6-pipe 3-layer)	Viagrow (Deep Water Culture)	AeroGarden Farm Plus Hydroponic Garden
Cost (\$ CAD)	4	3	2	1
Weight (lbs)	2	3	1	3
Size (m)	2	1	3	1
Reservoir Size (liters)	5	3	1	
Plant Slots	5	3	1	2
Style	3	3	2	2
Modularity	4	3	3	1
Total		<u>71</u>	44	

Engineering Design Specifications

#	Design Specifications	Relation (=, < or >)	Value	Units	Verification Method
	Functional Requirements				
1	Reservoir			Liters	Test
2	Water	>	20	Liters	Rainwater harvesting
3	Climate Control		0	С	Test
4	Power	>		Watts	Solar Panels
5	Submersible fountain pump	=	yes	N/A	Test
6	Channel for plants to grow	=	yes	N/A	Test
7	Starter cubes/small baskets to start seedlings	=	yes	N/A	Test
8	Return System	=	yes	N/A	Test

Engineering Design Specifications

	Constraints				
1	Weight	>		lbs	Analysis
2	Cost	<	100	\$	Budget
3	Size	=	6x6	m	Analysis
4	Weather	=	Year round	С	Analysis
5	Animals	=	Yes	N/A	Analysis
6	Electricity	=	No	Watts	Analysis
7	Clean water	=	No	Liters	Analysis

Engineering Design Specifications

	Non-Functional Requirements				
1	Easy to use	=	yes	N/A	Analysis
2	Variety of plants	=	yes	N/A	Test
3	Product life	>	5	Years	Test
4	Safety: Minimum Pinch Points	=	yes	N/A	Test

Conceptual Designs

Gabe's Designs Front Top Hoderata, PVC Pipes PVC Pipes -----PVC Pipes Tank Romp Pump 11 11 Pinp 11 Tonk Tonk Tonk

Alana's Designs

Weeda's Designs

Concept #1

NFT

pump would recycle the water hand pump or maybea moriel brund inside ? a nutrient filled reservoir of water

water running through tubes on the sides

- A water reservoir that rests at the bottom and is full of the nutrients needed for the plants.

- A hand pump or maybe another type of pump is used to pump the water up A name pump stat holds the plants. The plants are placed in a pipe with holes. the bottom roots / stems of the plant in the pipe are touching the constant nutrient water solution passing by nutrient water is then re-entering the water reservoir from the otherside, and the cycle continues

-can create rows of plants and add more pipes connected to the water flow to grow even more plants.

85 CNO 1 prain a timer?

Drip System

Concept 3

Waterpump

-a tube runs at the top of the pipe containing the plants and has a dripping sport at each plant

-the nutrient water solution is pumped using a water pump from its reservoir up to the plants and then drips into each one the pipe containing the plants and solution will then have another pipe working as a drain to avoid overflow => drain leads to reservoir

-may be a timer could be placed with the pump so that its pumping the solution at certain intervals ...

rainwater Water pump

- the water is transferred down with gravity through multiple rows of pipes that contain the plants >look likesteps - eventually the rows lead to a nutrient filled water reservoir

- a pump then pumps the solution back to the rainwater reservoir where it is recycled again through the system ...

-tubes connect all things to one another

Joseph's Designs

	•			-	Sder Pan	els	
	#1		æ.		P	F	Q *
		1		TE-		R-	
	Notors	#		H	- fut	- RH	
	2-modele hypionics System	1				G .	
0	Nutrillen tank mines water w/				40-	12	
0	5-ft, height allows many dants	/	-				A
44	18" (un on each module allows						
00	evation achieved through use			4	48		Þ 1.5'
06 aj	a secondary pump and			100	000	200	+
0 4	ersofle build (NFT)			00	000		H)'
all.	lesting of more here			13"			1
mo	dule height, run largth, etc.		54.			0000	35
0 Po	ner achieved via solar		Œ	F	000		
owar	es chreelester through hydroponics		C	to		000	
Sy St	im, reusing Walk						
			TE -		111111	mmm	178000
					=		
		-	► : Wat	es Flou			
			₽º elec	thie Ay .	flow		
		1	V& Nat	Hon Tan	k		
		F (CE Cire	ulation	tanks		
		ľ	28 Pump				
		A	· Airsto	ne		***	* *

Benchmarking/Optimal Design Choice

Specifications	Joe's Design 1	sign 1Weeda's Gravity Design 2 $($ 5.90 $\$195.99$ $\$$ $1bs$ ≈ 33 lbs \blacksquare $x 0.25$ $6 x 6 x 4$ \blacksquare L $\approx 20 L$ \blacksquare 24 \blacksquare \blacksquare TGravity fed \blacksquare bleNo \blacksquare	Gabe's Design 2
Cost (\$CAD)	≈ \$126.90	\$195.99	\$330
Weight (lbs)	≈ 28 lbs	\approx 33 lbs	≈ 25
Size (m)	1.5 x 1.2 x 0.25	6 x 6 x 4	1 x 0.5 x 1.2
Reservoir Size (liters)	≈ 18 L	$pprox 20 \ L$	≈ 19
Plant Slots	48	24	36
Style	NFT	Gravity fed	NFT
Modularity	Portable	No	Portable

Benchmarking/Optimal Design Choice

Specifications	SpecificationsImportance(\$CAD)4ght (lbs)2(m)2rvoir Size (liters)5t Slots5e3	Joe's Design 1	Weeda's Gravity Design 2					
Cost (\$CAD)	4	3	2					
Weight (lbs)	2	2	1					
Size (m)	2	3	1					
Reservoir Size (liters)	5	2	3					
Plant Slots	5	3	1					
Style	3	3	3					
Modularity	4	3	1					

Project Plan and Cost Estimate

Project Plan (Currently)

				1	T			Marc	h. 202	0																										
LIST	TITLE	DUE DATE	LABELS	\$	12	13	14	15	16 1	7 1	8 19	20	21	22	23	24	25	26	27	28	29	30	31	01	02	03	04	05	5 06	5 07	08	09	10	11	12	13
Deliverat	Deliverable	2020/02/14			1																										T					
Deliverab	Deliverable	2020/02/17																																		
Deliverat	Deliverable	2020/03/02																																		
Deliverat	Deliverable	2020/03/19			nd C	Custor	mer F	eedb	ack			-1																								
Deliverat	Status Upda	2020/03/30										+				Statu	s Up	date					-1.		+6	9										
Deliverat	Final Project	2020/04/06																					à		-0	Fina	alQ			Fin	al Pro	oject F	reser	ntation	IS	
Deliverat	User Manua	2020/04/10																									i			•	User	Manu	ial			
Deliverat	Deliverable	2020/01/24																																		
Things To	Talk to peop	2020/01/10																																		

Cost Estimate

- 1. Zip ties (\$11.69)
- 2. Step up converter (\$37)
- 3. Clay pellets (\$26.45)
- 4. Water containers (\$21.02)
- 5. Seeds (\$5.00)
- 6. Solar panels (funded by construction team)

Total: \$101.16

Prototypes & Client Feedback

Prototype I

Client Meeting and Feedback

- Client was impressed with the compost-based water nutrition system
- Client suggested a guide on how to effectively compost
- Client thought minimizing costs to budget for solar panels was a good idea

- What is the greatest height that the 120V pump can supply water to using a 110V step up converter?
 - Test heights: ◇ 3'6" ◇ 4' ◇ 4'6" ◇ 5'

Test Plan

PVC pipe angles

- What is the smallest angle that the PVC-pipe pots can be placed at to control water/nutrient flow and to have the greatest number of plant rows possible?
 - The ideal angle was determined using Solidworks to model the orientation of the PVC pipes
 - 🛇 🛛 Smallest angle: 3.5•
 - 🔷 🛛 Angle used: 5.70
- The 1.2 degree increase from the smallest angle was added to account for any error, ensuring water flow

Next Steps/Future Work

- Used client's feedback to implement into our last and final design
- Made final purchases for our final design • The plants, pipes, buckets, etc.
- Built final prototype/design using all of our purchased items
- Presented at Design Day

Summary of Project

The hydroponic system fulfills:

- Affordability
- Portability
- Maximum plant plots

Prototype II

- Includes 32 plots for plants per system
- Water/nutrient solution has a controlled flow through system

"Basic Hydroponic Systems and How They Work." https://www.simplyhydro.com/system/

Questions?