

User Manual

Accessible Switches

GNG 2101 [B]

Submitted by

B14: Accessible Switches

Ross McNamara, 300119731

Jake Brown, 300112518

Ethan Bowering 300116537

Daniel Holmes 300117647

Ethan Graves 300110377

December 3rd, 2020

University of Ottawa

Abstract

Accessibility switches, switches that allow certain people with disabilities to use

computers, come in a standard 3.5 mm mono jack. Special software and hardware interfaces are

required to use switches with a personal computer, creating unnecessary costs. Furthermore,

Windows does not natively support switch scanning. In order to dramatically increase computer

access for people with disabilities, the task of creating a USB accessibility switch and

lightweight application to replicate switch scanning mouse was initiated. Customer needs,

benchmarking and target specifications are developed to define and solve the problem at hand.

Conceptual designs are created to form solutions, which later form prototypes. Extensive

prototyping and testing is performed to produce a final product; the Press-Ability switch

interface. The final product contains two main methods; the scrolling method and the bisection

method. It consists of both hardware, modelled on Solidworks and 3D printed, and software,

written in GO. The product's primary function is to allow people who suffer from disabilities or

limitations to communicate effectively with added ease. Customization has been implemented

for the product, so all users can have an optimal experience. Health and safety guidelines are

listed and should be followed to ensure proper use of the product. An affordable product

supporting 5 switches and high customizability will assist users with overcoming dexterity

disabilities while using a computer.

1

Table of Contents

Abstract 1

Introduction 1

Conceptual Designs 2
2.1 Functional Decomposition 2
2.2 Designs 2

2.2.1 Ethan Graves 2
2.2.2 Ross McNamara 3
2.2.3 Jacob Brown 4
2.2.4 Ethan Bowering 6
2.2.5 Daniel Holmes 7

2.3 Design Analysis 8

Prototype 1 9
3.1 Prototype Description 9
3.2 Visual Representation 10
3.3 Evaluation of Prototype 11

Prototype 2 11
4.1 Improvements 11
4.2 Prototype Description 12
4.3 Visual Representation 12
4.4 Testing and Evaluation 13

User Manual 15
5.1 Important Features and Customization 15
5.2 Functions and Capabilities 16
5.3 Making the Prototype 16
5.5 Health and Safety Guidelines 20

Conclusions and Recommendations for Future Work 21

Bibliography 22

APPENDICES 23

2

List of Figures

Figure 2.1.1: Functional Decomposition Chart 2
Figure 2.2.1.1: Cursor Scrolling 3
Figure 2.2.2.1: displays this screen for a row-column scan 3
Figure 2.2.2.2: represents the screen keyboard for this method. 4
Figure 2.2.2.3: Two Switch Scanning 4
Figure 2.2.3.1: Four Switch Interface 5
Figure 2.2.3.2: Bluetooth Version of Four Switch Interface 5
Figure 2.2.3.3: Predictive Speech 6
Figure 2.2.4.1: Arduino Nano 6
Figure 2.2.4.2: Breadboard and Schematic Views of Circuit 7
Figure 2.2.4.3: Macro Editor 7
Figure 2.3.1: End-Goal Concept 9
Figure 3.2.1: Prototype 1 10
Figure 4.3.1: Configuration Dashboard 12
Figure 4.3.2: Only 1 switch plugged in until we can solder to arduino nano (not shipped). 13
Figure 4.3.3: High waveform means unpressed, low means pressed. 13
Figure 5.3.1: Protective Case dimensions 18
Figure 5.3.2: Protective Case Lids 19
Figure 5.3.3: Protective Housing Rendering in Solidworks 19
Figure 5.3.4: Final Circuit 20
Figure 5.3.4: Arduino Micro in Protective Housing 20

3

List of Tables

Table 2.3.1: Concept Analysis 8
Table 3.3.1: Evaluation of Product Metrics 11
Table 4.4.1: Metric Evaluation 13
Table 5.3.1: Protective Housing Dimensions 17
Table A.1: Customer Needs 23
Table A.2: PDM Matrix 23
Table A.3: Target Specifications 24
Table A.4: Bill of Materials and Parts 25
Table A.5: Github Repository for all the software files 25

4

List of Acronyms

5

Acronym Definition

BOM - Bill of Materials

CAD - Computer Aided Design

OS - Operating Systems

PDM - Product Decision Matrix

FPS - Frames Per Second

COM - Communications

1 Introduction
As the world transitions into a digital era, an increasing number of people have resorted

to using computers as a primary form of communication. However, using a computer can be a

major challenge for individuals who suffer from medical conditions such as: cerebral palsy,

multiple sclerosis, and Parkinson’s, as well as for people who have poor hand-eye coordination.

A solution that allows users with disabilities to operate a computer is a device containing

switches, where the switches are buttons that act similarly to using a mouse. However, most

computers only allow for one switch to be plugged in at any given time, and most people would

need more than one switch. Therefore, a more effective solution would be a switch interface that

could run multiple switches simultaneously.

Currently, the majority of market solutions that make computers more accessible for such

individuals are generally expensive and not easily obtainable. Furthermore, the current switches

on the market use 3.5mm mono-jacks that plug into a computer. However, those are

incompatible and not recognized by the Windows operating system (OS).

When designing this product, certain criteria must be satisfied in order to meet the user

requirements. Those criteria include: the product must be reliable, while being easy-to-use,

affordable and customizable to individual users. After the third, and final, iteration of

prototyping, the most important categories of our target specifications (A.3) were met and

exceeded those of our competitors.

In the final prototype, we were able to manufacture the switch interface for $38, which is

not only well below our $50 target, but also more than three times cheaper than most similar

products currently available on the market. Moreover, our product is able to accommodate up to

five switches, that can all be used simultaneously. We also made sure to maintain an open-source

switch interface that allows for further individual user configurations.

1

2 Conceptual Designs

2.1 Functional Decomposition

Figure 2.1.1: Functional Decomposition Chart

2.2 Designs

Three designs were created by each team member, visual representations follow most
designs.

2.2.1 Ethan Graves

The first design is a software for controlling windows with a switch: The cursor starts at
top left and scrolls right along the page then moves down a row and repeats. When a switch is
pressed it activates a left or right click and resets the cursor to base position. The second design
is hardwire switches 3.5mm mono jack to a usb to get a native accepted signal that you could
make software for. The third design is a software for controlling windows with a switch: Use
root bisection method on computer screen to find desired cursor location. Would require one
switch to choose the side of the screen and another to select. In the image below the coloured
area would be the selected side. Keep cutting down until the mouse is over the desired location.

2

Figure 2.2.1.1: Cursor Scrolling

2.2.2 Ross McNamara

The first design is a row-column scan, it is a software for windows using 1 switch, and
USB type A interface. First, a highlighted row starts at the top, and advances to the next after a
fixed amount of time. When the row with the desired key is highlighted, the user hits the switch.
Once a row is selected, each column is highlighted, which would be a single key on the row in
this case. When the desired key becomes highlighted, the user hits the switch again selecting the
key. This software can use word prediction, for example have the last row contain 3-5 words that
start with the letter selected or a common word (ex The, I, you, etc). The speed of row/column
passing can be increased or decreased to fit the users abilities. The switch can be placed on a
desk, chair, as a foot pedal, and more. Figure __ displays this screen for a row-column scan

Figure 2.2.2.1: displays this screen for a row-column scan

The second design is keyboard halving switches, a software for windows, uses USB type
A interface, 3 switches needed. This works like a bisection method, eliminating halves at each
press. Pressing button one (B1) will eliminate half of the keyboard, or pressing B2 would
eliminate the other half. Keep pressing B1 or B2 to continuously half the new segment of the
keyboard, until the desired key is pressed. There can be a 3rd switch (B3) for backspace in case
the wrong button is pressed (an undo button). If it takes too many clicks to get the desired key,
users may lose patience. This is a very easy software to learn/use, and quick setup.

3

Figure 2.2.2.2: represents the screen keyboard for this method.

The third design is two=switch scanning, using USB type A interface, for windows.
There are only 2 switches needed. Adjustable to perform left click, right click, tab, enter,
backspace, space, arrow keys and more. The buttons are 3 inches in diameter. These switches are
represented in Figure 2.2.2.3

Figure 2.2.2.3: Two Switch Scanning

2.2.3 Jacob Brown

The first design develops a USB-A interface that works for Windows 10, capable of
running two or more switches simultaneously. The button sequence would be less complicated
using four switches compared to two or three. When using four switches, the user is not required
to operate a keyboard or a mouse. The buttons can have an arrangement in any order depending
on the needs of the user. Following is an example of an arrangement that could be implemented
for the user as seen in figure #.

● The purple button would be the backspace/ back button and left-arrow
● The yellow button would be the tab button and right-arrow
● The red button from the left would be the left-click, enter, and up-arrow
● The blue button would be the right-click and down-arrow.

Each button controls ¼ of the screen. To move the cursor to the desired location, hold down the
button(s) until the cursor is in the correct location, then double-click both buttons at the same
time to click on the item.

4

Figure 2.2.3.1: Four Switch Interface
The second design is a Bluetooth adapter interface for Windows would give users an

alternative option to USB-A adapter interfaces. A customer designed Bluetooth adapter could
accommodate up to four switches simultaneously. The switches could still be used as described
in the idea above. A downside to the Bluetooth option would be that the adapter would need to
be plugged into a wall outlet.

Figure 2.2.3.2: Bluetooth Version of Four Switch Interface
For the third design, in order to allow users with disabilities to write documents such as

emails or word documents, a software would be created that would help users with such tasks.
The USB-A interface would utilize two switches to scroll up and down and the other for left and
right. The document writing software would be programmed to help the user communicate
effectively and efficiently using predictive suggestions. The program would initially give the
user a very general list of topics and then the user would scroll through the topics until they came
across one that they wanted to write and discuss. Then, the program would give a more specific
list of topics relating to the matter they just selected. The program will provide predictive text
suggestions to the user to help write documents quickly and efficiently.

5

Figure 2.2.3.3: Predictive Speech

2.2.4 Ethan Bowering

For the first design, use an Arduino Micro as the processor and I/O hub for the switch
adapter. An Arduino Micro seems to be the best choice of arduino for this project as it is very
small (48mm x 18mm), and is based off of the ATmega32U4 microcontroller. This
microcontroller has onboard USB Communication support which would allow it to connect to a
PC over USB and provide mouse and keyboard inputs to the PC, without the need of an external
circuit to add this functionality (an Arduino Nano, and many other models would require this).

Figure 2.2.4.1: Arduino Nano
For the second design, a circuit can be built consisting of several 3.5mm mono jacks

which can then each complete a circuit between the 5V line and one of the digital I/O pins on the
Arduino Micro (which features 20 individual digital I/O pins). When the button is pressed, it
completes a circuit which will connect the 5V line to the I/O pin, which the arduino can then
read as “HIGH” using the “digitalRead” function, and then the software implementation will
react accordingly to the button press. When the button is not being pressed, a pull-down resistor
will connect the I/O pin to GND, which the “digitalRead” function can then read as “LOW”, and
the software will act accordingly (In the figure below, the button switch would be replaced by a
3.5mm jack which then connects to an accessibility switch).

6

Figure 2.2.4.2: Breadboard and Schematic Views of Circuit

For the third design, in software, a macro editor could be created. This would allow the
user to easily create their own macros (a pre-configured sequence of several keystrokes), which
can then be bound to a certain button and activated when that button is pressed. Windows
heavily uses keyboard shortcuts which can be difficult to physically use as they can require
multiple hands, or very stretched out hands. For example, a button could be bound to a macro
that simulates the “ctrl-alt-del” sequence of keystrokes to easily bring up the menu to open the
task manager, or sign out of the computer. Another example is “alt-F4”, which is used to close a
window. This macro could be set up and then bound to a certain button to easily close the current
window.

Figure 2.2.4.3: Macro Editor

2.2.5 Daniel Holmes

The first idea is creating a chrome extension is probably the best way to interact with
more than one other piece of software using the input of our switches. Because manipulating

7

applications running the browser would always be done through the HTML. Desktop
applications are extremely difficult to interact with. Most desktop applications are probably
impossible to interact with without writing a specific plugin for each application. An extra step
required when trying to get input of the USBs could not be accessed directly from the browser.
However running a node.js server locally that can connect via websocket to the chrome
extension would allow the input from switches to be used by the chrome extension.

Another necessary part of the software is most likely a desktop application that would be
needed to read input from a USB. It would also allow the function of the USBs to be configured,
and perhaps interact with windows. The inputs from the USBs could be sent to a chrome
extension from this application as well. It would likely be written in javascript using node.js /
Electron for the user interface.

Thirdly, use a python or node.js program to interact with the mouse in windows. The
program would read the input of switches and toggle between different operations such as click,
drag and drop, double click. These 3 concepts can be combined together and be separate parts of
the same program.

2.3 Design Analysis

Each member ranked their concepts by the following criteria: +1 for containing a target
specification, 0 if N/A, and -1 for missing a specification.

Table 2.3.1: Concept Analysis

From these concepts, our group has selected a few of the highest ranking to further

develop. The solution will contain elements from Ethan G’s bisection method of finding the
desired cursor idea, Ethan B’s Arduino Micro idea of transmitting switch signals, and Daniel’s
idea for interacting with windows.

We have developed a group design concept, which is an integration of the concepts from
the previous step. The final concept will use an arduino to collect a binary signal from a number
of switches and transfer it as a digital signal to windows via USB A. Then an application on
windows will interpret that signal and use a scanning method to operate the cursor.

8

Student Idea #1 Idea #2 Idea #3

Ethan G 5 2 6

Ethan B 5 5 3

Daniel 4 3 5

Jake 4 3 3

Ross 5 4 2

A visual representation was created to show these concepts integrated.

Figure 2.3.1: End-Goal Concept

3 Prototype 1

3.1 Prototype Description

The first prototype was a focused one, on hardware. We created a prototype using
components that a team member had in their house, which could also be found in the
MakerStore. We had to test if the computer would recognize the button press. We used three
buttons on the breadboard which were connected to the microcontroller, to replicate the switches
that our client would use. So when the button(s) were pressed, the signal was sent to the arduino
microcontroller, then sent to the computer screen. We did not use actual switches at this stage
because they are far out of our budget for the first prototype. Every ¼ second, the computer
should read the value of the button press, and indicate if button 1, 2, 3, or any combination was
pressed. In our final design, we will increase the interval to a measure of nanoseconds for faster
results.

9

3.2 Visual Representation

Figure 3.2.1: Prototype 1

10

Arduino and Serial monitor 111

Arduino and Serial monitor 101

Arduino and Serial monitor 010

3.3 Evaluation of Prototype

We tested our first prototype to evaluate its performance. The first specification we noted
was the number of switch inputs. We were expecting to use three to five switches, and our
prototype used three, so we passed this criteria. The second specification we tested was the
ability to connect to windows, as expected, our prototype connected to windows. We also noted
the number of ports that our hardware used, and we met our criteria with one port. We tested if
our software is configurable, since a signal was displayed on the computer screen it passes this
criteria. We measured the cost of our prototype, which is tabulated in Table 8.1: Bill of Parts and
Materials. We expected this prototype to cost under $50, and the actual cost came to $38,
therefore passing this criteria. This $38 is if every component is bought from the MakerStore, or
amazon. Our actual cost comes to $0 since a group member had all components at home.

Table 3.3.1: Evaluation of Product Metrics

4 Prototype 2

4.1 Improvements

Our group met with our client again, and based on our client's feedback, we needed to

improve and modify our design slightly to improve our customer experience. Firstly, we need to

add one extra mono jack to the existing four to accommodate five switches, allowing for more

configurations simultaneously. A more straightforward configuration could be using those five

switches, one for every direction and one for a clicker. As well, the software should contain an

access bar to ease of changing configurations and settings. Furthermore, we need to continue to

emphasize the smoothness of the software over speed. A slower and smoother interface is more

straightforward for the customer to follow along and allows for a more comfortable user

11

Metric Expected Actual

of switch input =3 to 5 =3

Connects to windows works works

Cost <$50 $38.5 ($0 for us)

of ports Up to 3 =1

Software is configurable Yes Yes

experience. To conclude, if we maintain keeping our product open source, we will allow the

community to help develop low-cost switch interfaces to undercut expensive interfaces currently

on the market.

4.2 Prototype Description

The second prototype is a comprehensive focused one including hardware and software.

We used the components that were listed in BOM and purchased with the team budget. The first

prototype hardware was improved by swapping out the three temporary buttons with 3.5mm

mono jacks that will be used to plug existing switches into (figure 3.1.2). In terms of software the

two main methods of controlling the screen: Bisection and Horizontal to Vertical scroll

technique were successfully implemented as well as many customizable settings for each.

Settings added included switching between the methods, scrolling speed and direction of scroll

(Figure 3.1.1). The final element of this prototype was getting the software to read information.

We achieved this by adding the library PiSerial (https://pypi.org/project/pyserial/) into Python

and connecting the right COMM port.

4.3 Visual Representation

Figure 4.3.1: Configuration Dashboard

12

https://pypi.org/project/pyserial/

Figure 4.3.2: Only 1 switch plugged in until we can solder to arduino nano (not shipped).

Figure 4.3.3: High waveform means unpressed, low means pressed.

4.4 Testing and Evaluation

Table 4.4.1: Metric Evaluation

13

Metric Expected Actual

of switches 3.00 to 5.00 5.00

Cost of product ($) <150.00 7.00

Storage required < 1.00 GB 0.20 GB

Software is configurable Yes Yes

The first metric we tested was the number of switches. We expected to use 3 to 5

switches in our target specifications, and we used 3 in our first prototype. For our second

prototype, we expanded into 5 switches (which work), as wanted by the client. Next, we

calculated the cost of our prototype. According to our target specifications, we have a budget of

$150. Our first prototype cost $38.50, which ended being free because we already had the

materials. Our second prototype is still well within budget, being $7.00, meeting our criteria. The

third metric we measured was the required storage to run our software. We expected to need no

more than 1 GB, and we met this metric by using 200 MB. This was checked by recording the

storage that all of python uses for Daniel (2 GB), and subtracting 1.7 GB of non-project related

files from this. We then subtracted another 0.1 GB for any error, regardless, it was still well

under the 1 GB required. We did not test the storage required for our first prototype.

The next metric to test was if the software was configurable. Since our software runs and

recognizes the button presses (Figure 4.1.3), we have met the specification. An easy target

specification to check is if our prototype uses USB type A. Since this is the type of interface we

have been testing with since the start, it is clear that we meet this criteria. The next two metrics

we tested were very important. We needed to know if our prototype could successfully point and

click. As seen in section 4.2, our software can scroll along the screen, proving we have the

“point” metric met. We did not complete the clicking metric in time for our second prototype,

therefore we did not meet this target specification yet. We also tested if the software would

configure when the switch was plugged into the mono-jack, this was a success.

14

Uses USB A Yes Yes

Point Yes Yes

Click Yes No

Plugging switch into
jack

Yes Yes

5 User Manual

5.1 Important Features and Customization

The final product contains two main methods; the scrolling method and the bisection

method. Customization has been implemented for the product, so all users can have an optimal

experience. For the switches, the minimum delay between button presses (input delay) can be

customized to fit the user’s reaction time. This delay is measured in milliseconds, with a default

value of 50. If the user requires more time between button presses, they can increase this value.

There is an option for the user to create shortcuts with the buttons, perhaps to instantly trigger a

specific click. There are 2 shortcut slots available, and the most practical options would be left

click for shortcut 1 and right click for shortcut 2. The access of these shortcuts is presented at the

end of the important features section (6.1) in this report. The user can also pre-select the order of

interval halving for the bisection method. For example the user could select horizontal halving as

their first press, or vertical. Another required feature is that the COM port being used must be

identified using the windows device manager.

For the scrolling method, the speed and directions can be adjusted to fit the user’s

capabilities. The speed (pixels per second) is determined by the FPS and the pixels per frame the

by relation . The user is able to change the FPS (theof pixels/second P S ixels/f rame# = F × P

number of times the mouse will move per second) to 30, 60 or 144, with the default being 60

FPS. The pixels per frame represents the number of pixels the mouse will move in a second, and

can be changed to any integer value (1,2,3 etc.). Therefore if the user increases the FPS and/or

the pixels per frame, the scrolling speed will become faster, and vice versa. This is an important

feature for this product since the range of users and user capabilities is so large. If needed, the

user can also change the horizontal and/or vertical scrolling direction. This feature is more for

the user’s personal preference, some may want to look right to left instead of the traditional left

to right. One last important feature for the scrolling method is the option to reset the scrolling

position. This allows the user to restart the scrolling position from the current position of their

mouse, if they made a mistake or just need a reset.

There exists basic controls for this product that the user’s will learn quickly and with

ease. For the scrolling method, pressing button 1 will stop the scrolling if the software is

15

currently scrolling the screen, when it is not scrolling, the user can press button 1 to restart the

scrolling. Button 2 is set to activate shortcut 1 (which can be a left click), and pressing button 3

will activate shortcut 2 (which can be right click). Button 5 allows the user to toggle the type of

click they want for button 4. The process may seem confusing typed out, however the user will

pick up on these features after little experience.

For the bisection method, the first click of button 4 will cycle the orientation, the second

click activates “ready to click”, and the third click controls the type of click. Pressing button 5

will toggle the type of click. If not ready to click, pressing button 1 will select the left side of the

screen (or the top depending on the user’s customization). If ready to click, the selection is

restarted. Pressing button 2 will select the right side of the screen (or the bottom) if on not ready

to click, or will activate the shortcut 1 if ready to click. Button 3 is optional for the bisection

method, if on not ready to click, pressing button 3 will do nothing, and if on ready to click

shortcut 2 will be activated.

5.2 Functions and Capabilities

Our switch interface's primary function is to allow people who suffer from disabilities or

limitations to communicate effectively on a computer, with added ease. Commonly, these

disabilities and limitations usually affect hand-eye dexterity and discourage users from using

technology.

The second function is the implementation of a configurable scrolling method for the

screen. The different user needs can be configured to increase their ability to use the computer

effectively. The switch interface can scroll horizontal, vertical or use the bisection methods to

narrow down the screen section that the user would like to select. The user can also determine

the speed and colour of the scrolling method to help them.

5.3 Making the Prototype

The final product consists of both hardware and software components. To create the case

for the switches, a 3D printer is needed, the one used in our prototype is an Ender 3 Pro. The box

was printed using the environment friendly polylactic acid (PLA plastic); a thermoplastic

material capable of being melted and reshaped. The box was modelled in solidworks, a 3D CAD

software that is free for engineering students at the University of Ottawa. The box was initially

16

measured with digital calipers in Solidworks. The dimensions for the outside box, lid outside,

and lid inside are presented in Table 5.1.

Table 5.3.1: Protective Housing Dimensions

17

 Dimensions

Measurement Outside Box Lid Outside Lid Inside
(indented on all sides by 1 mm)

Length 48 mm 48 mm 46mm

Width 36 mm 36 mm 34 mm

Height 29 mm 1 mm 2 mm

Wall Thickness 1 mm

Base Thickness 5 mm

USB Cut out Feature

Measurements For USB cut out (The fifth circle is the side closest to the USB side)

Length From 6.05 mm (distance from the side with the circle cut outs)

Height 6 mm (Height from bottom)

Length 7.6 mm (Width of cut out)

Height 3.8 mm (Height of cut out)

Depth 1 mm (Cut out is depth of the wall)

Circle Cut Out Features

Diameter 6 mm (each of the five circles)

Height 12.46 mm (height of each circle from top)

Distance C - C 9.05 mm (distance between centers of two circles)

Distance C - E 6.28 mm (distance from centers of outside circles to the edge of the face
(circle 5 is closest to USB side))

Figure 5.3.1: Protective Case dimensions

18

Arduino Micro Support inside Housing

Length 38.5 mm (Starting from the USB End)

Width 17.7 mm (Starting from Circle cut out side)

Height -3 mm (Into the base thickness)

Figure 5.3.2: Protective Case Lids

After the protective housing and lid were designed in Solidworks, the files were printed
in PLA [1] by an Ender 3 Pro, 3D printer.

Figure 5.3.3: Protective Housing Rendering in Solidworks

Please refer to the github repository for all the software files (Table A.5).

For simplifying the circuit, we made a schematic in TinkerCad to show how the

mono-jacks are connected to the Arduino Nano microcontroller. Each mono-jack has two pins

that the wires are connected to, one for the ground and one for the voltage. The wires are

soldered to complete the connections between the microcontroller and the mono-jacks on the

actual circuit. It is important to note that the wiring and pinouts are the same.

19

Figure 5.3.4: Final Circuit

Figure 5.3.4: Arduino Micro in Protective Housing

5.5 Health and Safety Guidelines

The following health and safety guidelines should be followed to ensure proper use of the

product:

- Do not expose to extreme temperatures, as it could damage the Arduino micro and all the

electrical components inside the protective housing.

- Do not use the switch interface if the USB cable is frayed (wire exposed).

- If the protective housing is cracked or broken, refrain from further damaging the

protective case as it will void the warranty. Immediately return switch interface to

Press-Ability for a certified new replacement.

- Do not use excessive force when plugging in the USB cables or 3.5 mm mono jacks into

the switch interface.

- Do not attempt to change or replace the protective housing components, as it will void all

warranties.

- Refrain from using if the switch interface is undergoing an update.

- To prevent being shocked, plug the switches into the switch interface before plugging the

USB cable from the computer into the interface.

20

- When handling the switch interface, ensure hands are dry to prevent electric shock.

6 Conclusions and Recommendations for Future Work
We learned many difficulties to overcome throughout this project when designing a

product, especially during a pandemic. It is a challenge to have everyone access the hardware

and test out the product's functionalities as a whole, mainly because many of the groups reside

outside the Ottawa area and cannot commute and work in person with each other.

However, our product's capabilities can accommodate five switches synchronously,

exceeding the four switches maximum that most competitor's products can handle. Using five

switch configurations; community contributors can help develop more individual user

configurations as our work is open-sourced.

The cost-savings will help people afford accessible products that assist with overcoming

dexterity disabilities while using a computer. The cheaper we can make the product, the more

people with dexterity disabilities or limitations can afford to use a computer with assistance.

The recommendations that we have to build off our final prototype involves much

programming. Programmers should be familiar with coding in Python and other languages like

Java and programming Arduinos. The next function that should be implemented is programming

the predictive speech function. The user would then be able to write documents, emails, instant

messaging or even programming. This implemented function would allow people with

disabilities or limitations of dexterity in the hands to work in ever-growing technology-related

fields such as business or engineering. For the protective housing, we figured out that a friction

fit lid is still relatively loose. A recommendation would be to redesign the lid to be spring-loaded

so that it will stay in place. The other function that could be added is integrating more button

combinations of controls such as double-clicking, hold and drag. To conclude, expanding the

switch interface to work with other OS like Linux or Apple's IOS would help people who suffer

from dexterity type disabilities use our product.

21

7 Bibliography

[1] D. K. C. says: J. S. Says: E. H. says: and C. says: “What is PLA? Polylactic acid
properties, uses, & melting point,” 3D Insider, 10-Nov-2017. [Online]. Available:
https://3dinsider.com/what-is-pla/.

[2] MakerStore, “Electronics, Materials, and Merch,” MakerStore. [Online]. Available:
https://makerstore.ca/shop?olsPage=products%2Farduino-uno-r3.

[3] “SJ1-43502PM CUI Devices: Connectors, Interconnects,” DigiKey. [Online].
Available:
https://www.digikey.ca/en/products/detail/cui-devices/SJ1-43502PM/5130707?utm_adgrou
p=Barrel+-+Audio+Connectors.

[4] MakerStore, “Electronics, Materials, and Merch,” MakerStore. [Online]. Available:
https://makerstore.ca/shop?keywords=Arduino%20Micro&olsPage=products%2Fbreadboa
rd&page=3.

[5] MakerStore, “Electronics, Materials, and Merch,” MakerStore. [Online]. Available:
https://makerstore.ca/shop?olsPage=products%2Fjumper-cables-per-10.

22

APPENDICES

Table A.1: Customer Needs

Table A.2: PDM Matrix

23

Need Importance
(1-5)

1 = Least
5 = Most

1 Product is intuitive 5

2 Product is customizable to the need of the individual 5

3 Product is reliable/won’t break 5

4 Product is inexpensive 4

5 The software can perform basic windows operation (point and click) 4

6 Product has an easy configuration for support/ family members to set up 4

7 The product uses USB-A (rather than USB-C) 3

8 The product can perform the text to speech 3

9 The product uses Bluetooth instead of traditional USBs or mono-Jacks 1

Metric

Need
#s

Metric Imp (1-5)
1 = Least, 5 = Most

Units

1 1 Time for a new user to get
accustomed to the software

3 Hours (h)

2 1,6 Steps to set up the software 3 # of steps

3 2,6,7 Number of switches/ ports that can be
used simultaneously

3 #of

4 2,5,6 Software is configurable 4 # of settings

5 3 Required storage 2 GB

6 3 Ram 2 GB

7 3 CPU 2 GHz

Table A.3: Target Specifications

24

8 4 Cost of product 5 USD

9 5 Average time to click on the right part
of the screen

3 savg

10 8 Preform text to speech 3 Y/N

11 9 Bluetooth compatibility 1 Y/N

Metric Units Marginal Ideal Reasoning

1 Time for a new user to get
accustomed to the software

h < 8 1 If the user is unable to
learn how to use the
product in an hour then it's
probably too hard to use.
For more than 8 hours they
will give up.

2 Steps to set up the software # of steps < 10 3 There shouldn’t be an
excessive number of steps.

3 Number of switches/ ports that
can be used simultaneously

#of > 2 4 The average user will use 3
switches

4 Software is configurable # of settings < 20 10 We shouldn’t need more
than 20 settings. 10
Settings should allow for
enough configuration

5 Required storage GB < 3 1 3 GB would be a lot. 1 GB
would probably be more
than enough

6 Ram required GB < 1 0.3 Using 1 GB of RAM on
one program is a lot for
most computers. 300 MB
is not too bad

7 CPU required GHz < 0.3 0.1 For a 3GHz CPU with 2-4
cores, 0.3-0.1 GHZ is
reasonable

8 Cost of product USD <150 0 Our closest software
comparable is 150$. Our
software would be free so
we can try to stay as close
to $0 as possible

The following table is the Bill of Materials of the components to build our final

prototype. Each component can be found at the University of Ottawa's MakerStore.

Table A.4: Bill of Materials and Parts

Table A.5: Github Repository for all the software files

25

9 Average time to click on the right
part of the screen

savg < 5 2 These would mean the
solution is fast and easy to
use

10 Perform text to speech Y/N Y Optional ideally our
software can perform the
text to speech

11 Bluetooth compatibility Y/N Y Optional ideally the
switches could use
Bluetooth

Item # Part Name Description Quantity Unit Cost Extended Cost

1 Arduino Micro [2] Contains
programmable input/
output peripherals

1.00 $17.00 $17.00

2 3.5 mm mono
jack [3]

Connects
microcontroller to
computer

1.00-3.00 $11.00 $11.00

3 Breadboard [4] Solderless device for
electronics testing

1.00 $10.00 $10.00

4 Wires [5] Connects breadboard
to the microcontroller

10.00 $0.05 $0.50

 Total:$38.50

https://github.com/danielholmes839/GNG2101-Accessible-Switches

https://github.com/danielholmes839/GNG2101-Accessible-Switches

