
# **ELG4912- Progress Review Presentation**

Presented By Group 7



uOttawa.ca

# **Goal: Increase the popularity of E-Scooter during the winter**



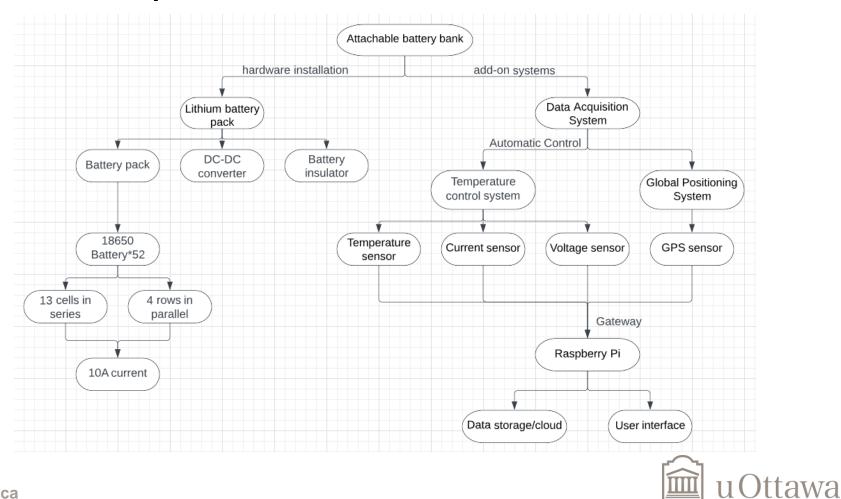


### **Business Case**

Retail

\$499.9




### **Subscription**

12.99 monthly49.99 seasonal





### **System requirements Functional Requirements**





## **System requirements**

#### Safety protection

- Heat Shrink Wrap

#### Temperature control system

- Automatic detection and control
- Resistance Heating System
- Prevents the battery from overheating

### GPS system

- Locate lost electric scooter






### **System requirements**

### Non-functional requirements

- Performance and scalability
- Portability and compatibility
- Reliability/Maintainability
- Localization
- Usability







## **Hardware Design**

- 48 V, 10 A battery Pack
- 13 cells in series
- 4 rows in parallel



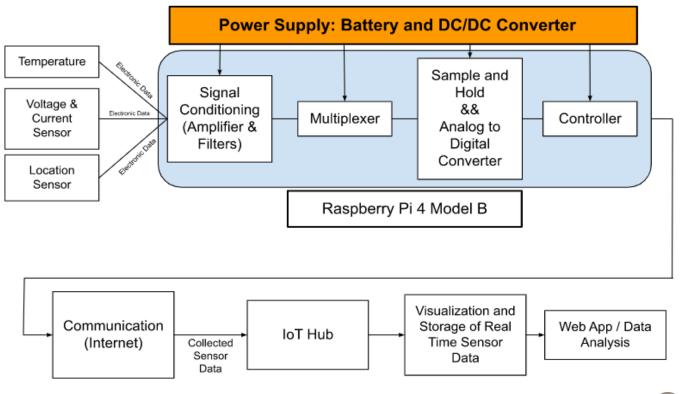
| +-+-+-+-+ |
|-----------|
| +-+-+-+-+ |
| +-+-+-+-+ |
| +-+-+-+-+ |



# **Hardware Design**

Battery Management System

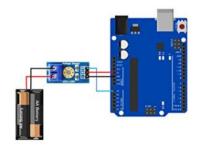
Insulation Layer








# **Data Acquisition**


Sensor -> Signal Processing -> Cloud -> Web





# **Sensors**





| Parameters                | Specifications           |
|---------------------------|--------------------------|
| Voltage detection range   | 0.02445 - 25V DC         |
| Voltage Analog Resolution | 0.00489V                 |
| Product Dimensions        | 16 x 10 x 2 cm; 20 Grams |
| 11 CO III : T. DOGOZII    |                          |

Table 5.2 - WayinTop DC0-25V specs

#### Voltage Sensor



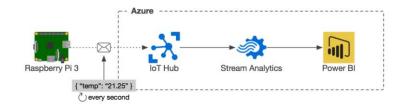
| cia .    |   |  |
|----------|---|--|
| 11       | B |  |
|          |   |  |
| AA Tasta |   |  |

| Parameters                                     | Specifications            |
|------------------------------------------------|---------------------------|
| Supply Voltage                                 | 3V - 5.5 V (typically 5V) |
| Current Output                                 | 50 mA                     |
| Operating Temperature                          | -40 to + 85 °C            |
| Max Altitude                                   | 50,000 m                  |
| Max Velocity                                   | 515 m/s                   |
| Table 5.4 - Geekstory BN-220 sensor properties |                           |

#### **GPS** Sensor



| Parameters        | Specifications                                                                       |
|-------------------|--------------------------------------------------------------------------------------|
| Supply Voltage    | 3.3 V or 5.0 V                                                                       |
| Temperature Range | $-55^{\circ}C$ to $+125^{\circ}C$                                                    |
| Accuracy          | ± 0.5°C                                                                              |
| Ground Pin        | Connect to the ground of the circuit                                                 |
| Vcc               | Powers the Sensor (5.0 V)                                                            |
| Data              | This pin gives output the temperature value<br>which can be read using 1-wire method |


Table 5.1 - DS18b20 temperature sensor specs

#### **Temperature Sensor**

| Parameters                               | Specifications           |
|------------------------------------------|--------------------------|
| Chip                                     | ACS712ELC-30A            |
| Range of current detection               | -30A to 30A DC           |
| Analog Output                            | 66mV/A                   |
| Product Dimensions                       | 16 x 10 x 2 cm; 20 Grams |
| Table 5.3 - WavinTop ACS712 sensor specs |                          |



## Raspberry Pi + Azure Cloud



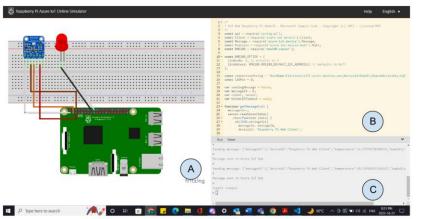
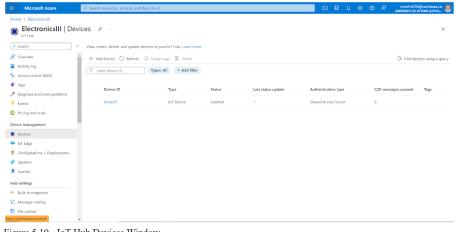
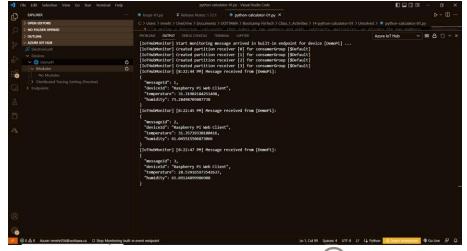





Figure 5.9 - Raspberry pi Azure IoT Online Simulator Window



#### Figure 5.10 - IoT Hub Devices Window





## **Assumptions**

- Scooters can still function standalone is certain environmental conditions.
- Scooters can still function while being charged.
- Scooters have similar charging protocols.
- Materials and equipment will be available for this project.



### Risks

- Charging below temperature
- Damaging Battery Physically
- Fire Hazard Overheating
- Over/Under voltage
- Shock risk & Dead shorts

### Solutions

- Battery Heater
- Battery Insulations
- Enclosure
- Voltage and Current sensors
- Battery Management System & Testing



## **Risk Management**

### Likelihood of exposure to hazard (1-5): 3 – Possible Consequence of exposure to hazard (1-5): 3 – Moderate

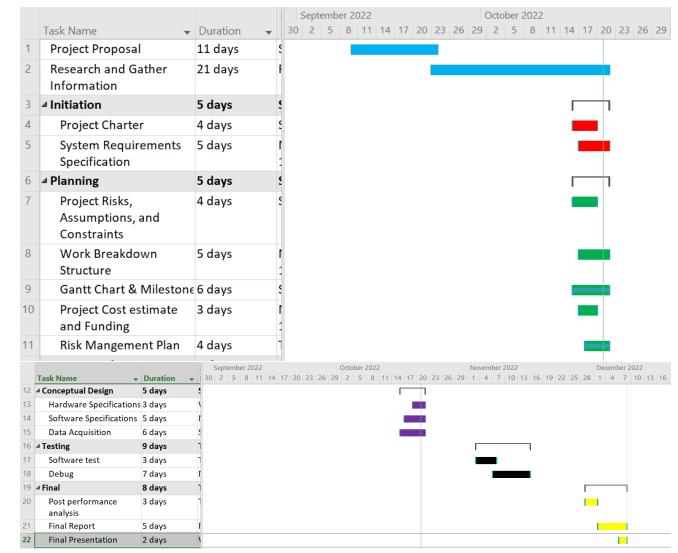
|           |                | Consequence   |        |          |           |              |
|-----------|----------------|---------------|--------|----------|-----------|--------------|
|           |                | Insignificant | Minor  | Moderate | Major     | Catastrophic |
|           | Almost Certain | High          | High   | Extreme  | Extreme   | Extreme      |
| Lik       | Likely         | Medium        | High   | High     | Extreme   | Extreme      |
| eli<br>ho | Possible       | Low           | Medium | High     | ) Extreme | Extreme      |
| od        | Unlikely       | Low           | Low    | Medium   | High      | Extreme      |
|           | Rare           | Low           | Low    | Medium   | Medium    | High         |

- Training and proper PPE (For those working with the battery)
- Have an Emergency Plan (Bucket sand, Ventilation, etc.)



### **Gantt Chart**

### Details of Gantt chart.


- Initiation, Planning and Conceptual design were completed.
- Testing and final submitions will be done before 2022/12/22.

|    |                                                   |            | Estimated       | Estimated       |              |                    |                    |
|----|---------------------------------------------------|------------|-----------------|-----------------|--------------|--------------------|--------------------|
|    | Task Name 🗸                                       | Duration - |                 |                 | % Complete 🗸 | Task Owner 🗸       | Task Depend on 🚽   |
| 1  | Project Proposal                                  | 11 days    | Sat 9/10/22     | Fri 9/23/22     | 100%         | Everyone           |                    |
| 2  | Research and Gather<br>Information                | 21 days    | Fri 9/23/22     | Fri 10/21/22    | 100%         | Everyone           | #1                 |
| 3  | Initiation                                        | 5 days     | Sat 10/15/22    | Fri 10/21/22    | 100%         |                    |                    |
| 4  | Project Charter                                   | 4 days     | Sun 10/16/22    | Wed 10/19/22    | 100%         | Kaiyi Yuan         |                    |
| 5  | System Requirements<br>Specification              | 5 days     | Mon<br>10/17/22 | Fri 10/21/22    | 100%         | Kaicheng Zhang     |                    |
| 6  | ✓ Planning                                        | 5 days     | Sun 10/16/22    | Fri 10/21/22    | 100%         |                    |                    |
| 7  | Project Risks,<br>Assumptions, and<br>Constraints | 4 days     | Sun 10/16/22    | Wed<br>10/19/22 | 100%         | Josiah Bigras      |                    |
| 8  | Work Breakdown<br>Structure                       | 5 days     | Mon<br>10/17/22 | Fri 10/21/22    | 100%         | Lidan Huang        |                    |
| 9  | Gantt Chart & Milestone                           | 6 days     | Sun 10/16/22    | Fri 10/21/22    | 100%         | Lidan Huang        |                    |
| 10 | Project Cost estimate<br>and Funding              | 3 days     |                 | Wed<br>10/19/22 | 100%         | Kaiyi Yuan         |                    |
| 11 | Risk Mangement Plan                               | 4 days     | Tue 10/18/22    | Fri 10/21/22    | 100%         | Josiah Bigras      |                    |
|    | Task Name                                         | Duration 🗸 |                 |                 | % Complete 🗸 | Task Owner 🗸       | Task Depend on 🛛 👻 |
| 12 | Conceptual Design                                 | 5 days     | Sun 10/16/22    | Fri 10/21/22    | 100%         |                    |                    |
| 13 | Hardware Specification                            | •          | Wed 10/19/2     | Fri 10/21/22    | 100%         | Kaiyi Yuan         |                    |
| 14 | Software Specifications                           | 5 days     | Mon 10/17/2     |                 | 100%         | Nima Mehrjoonezhad |                    |
| 15 | Data Acquisition                                  | 6 days     | Sun 10/16/22    | Fri 10/21/22    | 100%         | Nima Mehrjoonezhad |                    |
| 16 | ▲ Testing                                         | 9 days     |                 | Tue 11/15/22    | 0%           |                    |                    |
| 17 | Software test                                     | 3 days     |                 | Mon 11/7/22     | 0%           |                    |                    |
| 18 | Debug                                             | 7 days     |                 | Tue 11/15/22    | 0%           |                    | #17                |
| 19 | ⊿ Final                                           | 8 days     | Tue 11/29/22    |                 | 0%           |                    |                    |
| 20 | Post performance<br>analysis                      | 3 days     | Tue 11/29/22    | Thu 12/1/22     | 0%           |                    |                    |
| 21 | Final Report                                      | 5 days     | Fri 12/2/22     | Thu 12/8/22     | 0%           | Everyone           |                    |
| 22 | Final Presentation                                | 2 days     | Wed 12/7/22     | Thu 12/8/22     | 0%           | Everyone           | #21                |
|    |                                                   |            |                 |                 |              |                    |                    |



## **Gantt Chart**

Bar graphs show the time, duration and progress of tasks.





# **Milestones**

### • Phase 1 and 2 were completed.

Dates for • Phases 3, 4, and 5 are Scheduled.

| Project Milestone                          | Description                                                                                                                                                                       | Date        |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Phase 1:Completed the Project<br>Proposal  | Determine the project topic.<br>Gather information.                                                                                                                               | 2022/09/23  |
| Phase 2:Plan and Design                    | Battery pack hardware and<br>software conceptual design.<br>System requirement<br>specifications. Project<br>planning, such as estimated<br>costs, risks, planning time.          | 2022/10/21  |
| Phase 3: Testing and<br>Debugging Software | Test plan.Staff test the software and debug.                                                                                                                                      | 2022/11/15  |
| Phase 4:Post performance analysis          | Evaluation of works.<br>Contribution list.                                                                                                                                        | 20222/12/01 |
| Phase5:Final Report and<br>Presentation    | Detailed plan, conceptual<br>design, schedule, estimated<br>budget and post performance<br>analysis. Analyze test results<br>and developments. Present<br>about the final report. | 2022/12/08  |



| 18650<br>Battery*52             | \$260    |
|---------------------------------|----------|
| Battery<br>Management<br>System | \$12.99  |
| Battery Insulator               | \$21.64  |
| Raspberry Pi                    | \$119.86 |
| Heat Sensor                     | \$22.05  |
| Current Sensor                  | \$12.99  |
| Voltage Sensor                  | \$10.20  |

### **Budgets**

Toatal cost of materials will be \$443.73.

All the budget which will be evenly split among 5 of the members.



# **Reference List**

- "Electric Scooter Rental Ottawa: Escape Bicycle Tours & Rentals." *Escape Bicycle Tours & Rentals- Explore Ottawa By Bike*, 20 Oct. 2022, <u>https://escapebicycletours.ca/rentals-maps/electric-scooter/</u>.
- Battery University. "BU-502: Discharging at High and Low Temperatures." *Battery University*, 3 Mar. 2022, <u>https://batteryuniversity.com/article/bu-502-discharging-at-high-and-low-temperatures</u>.
- External battery for Xiaomi M365/Pro/1s. [Online]. Available: https://m365.embedden.com/article\_xiaomi\_m365\_pro\_external\_battery.
- J. Heath, "Can you ride electric scooter during winter?," Electric Wheelers, 06-May-2022. [Online]. Available: https://electricwheelers.com/can-you-ride-electric-scooter-during-winter/.

