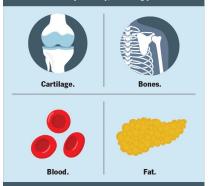


GNG2101 – One Handed Walker Steering System

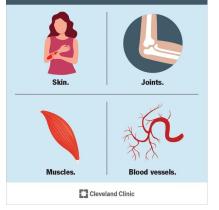
Final Presentation

Team Z22: The Fast and Fabricating Five (FFF)

Faculté de génie | Faculty of Engineering uOttawa.ca


Agenda: Project Progress Presentation

- 1. Empathizing With Our Client
- 2. Problem Statement
- 3. Customer Needs
- 4. Product Benchmarking
- 5. Target Specifications
- 6. Business Model Canvas
- 7. 3-Year Income Statement
- 8. Feasibility Study
- 9. Simplified Project Plan
- 10. Solution Options
- 11. Early Concepts and Chosen Concept
- 12. BOM
- 13. Prototypes
- 14. Issues Faced, Skills and Lessons Learned
- 15. Future Work



Ehlers-Danlos Syndrome

Ehlers-Danlos syndrome can affect any connective tissue in your body, including your:

Depending on where EDS affects your connective tissue, you might experience symptoms in your:

Ehlers Danlos Syndrome

Adaptable

Convenient

Portable

Problem Statement

The client requires a **maneuverable**, **lightweight**, **easily attachable** device that allows them to steer the walker **effectively** with one arm through narrow spaces and diverse terrain.

Translated Client Need Statements

Functional (DO)

- Easy to maneuver (easy to carry around user friendly, easy to take on and off easy to fold)
- Easily applicable brake system
- Allows for one handed steering of walker

Non-functional (BE)

- Adaptable (works for either arm)
- Durable (different weather types)
- Installable without permanent changes to the walker

Number Priority (most to least importance)	Needs
1	Allows for one handed steering of walker
2	Adaptable (use with either arm)
3	Maneuverable (easy to take on and off and fold)
4	Easily applicable brake system
5	Durable (can be used in different kinds of weather)
6	Installable without permanent changes to the walker

Target Specifications

Characteristics	<>=	Target Value
Folding/Collapsing	=	Yes
Total weight	<	5 pounds
Length	=	55 cm
Length (Folded)	<	25 cm
Adaptable	=	Yes
Time to assemble	<	45 seconds
Time to attach to walker	<	30 seconds
Ease of use	=	Yes
Cost	<	100\$ CAD

Business Model Canvas

	Triple Bottom Line Business Model Canvas							
Key Partners Drive medical Amazon 	Key Activities • Advertisement Key Resources • Walkers	 Increase walker safety and accessibility to people with limb or joint disabilities, and/or elders 		Customer Relationships • Trusting • Positive • Co-Creation • Channels • Field Sales • Amazon Store	Customer Segments • People who struggle with limb or joint disabilities • People who want an alternative way to use their walkers			
Cost Structure Marketing	g & Sales		Revenue Streams Product Sales Warranty 					
 Social and Environmental Cost Might be seen as useless Creation of PVC pipes releases dangerous gasses 			Socia • •	al and Environmental Ber Helps to reduce greent Helps to reduce energy Recycled material Helping People with mo Inclusivity	nouse gasses consumption			

Our Business Model: Brick and Mortar

Allows the client to

01 02 Physically test Make observations

03 Inquire

3-Year Income Statement

3 Year Income Statement							
Particulars	Year 1	Year 2	Year 3				
INCOME							
Revenue from Sales	750	350	1500				
Revenue from Past Yr inventory		750	300				
OPERATING INCOME	750	1100	1800				
EXPENDITURE							
Cost of material/unit	120 (10x)	120 (5x)	120(10x)				
Labor/Salary	20	20	20				
Marketing	30	30	30				
Depreciation	10	10	10				
Total cost of material (all units/yr)	1200	600	1200				
OPERATION EXPENSES	1260	630	1230				
Gross Profit for the Yr	-450	470	570				

Feasibility Study (TELOS)

Technology: The technology needed to complete our project involves the manufacturing process - 3D printing.

Economics: Dependent on manufacturing and production.

Legal: Confidentiality, safety.

Operational: Iterative engineering design process.

Schedule: Weekly team meetings, design day.

Simplified Project Plan

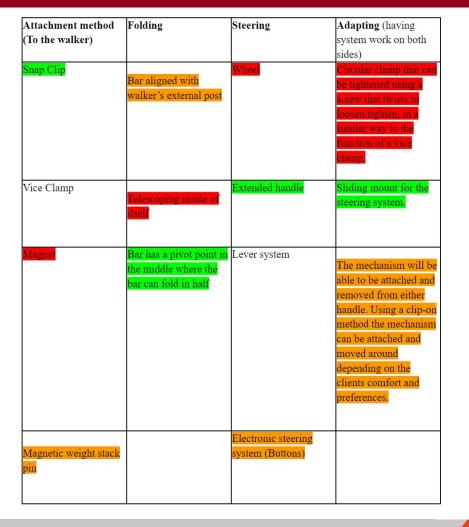
<u> </u>	# Task Time				Owner									
#	IdSK	м	on	th '	1	N	lon	nth	2	Month 3				
1	Deliverable A	x								2				All members
2	Deliverable B		x											Tyler
3	Design criteria		х											All members
4	Conceptual design & Project plan			х	х									All members
5	Prototype 1, Tests and Feedback					х	x							Jonathan
6	Prototype 2, Tests and Feedback								x	x				David
7	Prototype 3, Tests and Feedback										x	e 4		Elisha
8	Material of Design Day & Presentation				· · · · ·							x		All members
9	Production of user manual												x	All members
10	10 Project closeout x All membe				All members									
Pro	Project risks Delivery delay of important project components + Busy schedules													

X means one week

means milestones

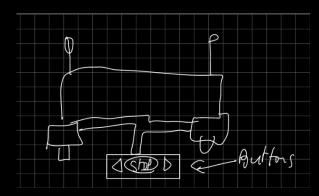
- Client Meetings
- Design Day
- Final Presentation

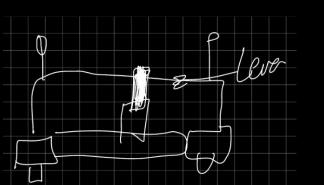
Template retrieved from GNG 2101 lecture 11 slides

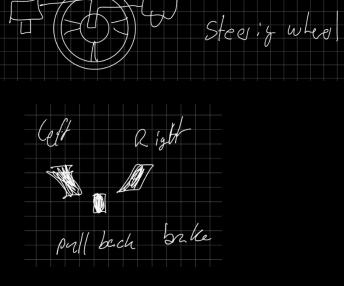

Université d'Ottawa | University of Ottawa

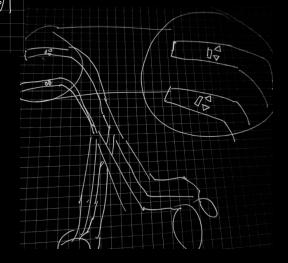
Solution Options

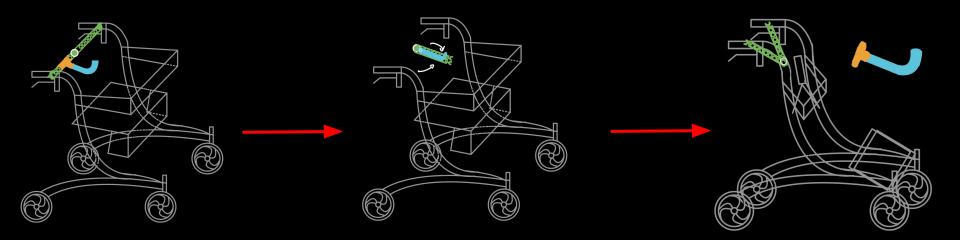
4 Subsystems


- 1. Attachment Method
- 2. Folding Mechanism
- 3. Steering System
- 4. Adapting System


*Solution we selected

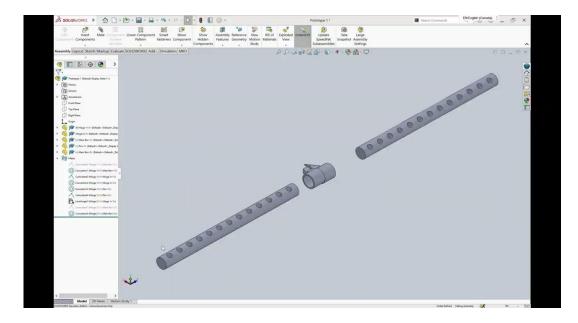



Early Concept Ideas



 \mathbb{O}

Overview of Chosen Concept


Bill of Materials (BOM)

Final BOM								
Item Number	Part Name	Description	Quantity	Unit Cost	Extended Cost			
1	PVC pipe	³ ⁄ ₄ " PVC Pipe	1	\$8.86	\$8.86			
2	Clamp PLA	Used to 3d Print Clamps	1	\$0.15/g	\$2.72 for 12 g			
3	Foam	Used to add padding to main bar and secondary bar.	1	\$9.00	\$9.00			
4	Hinge	Hinge	1	\$28.12	\$28.12			
5	LePage Construction Adhesive	Used to connect main bar to hinge.	1	\$9.55	\$9.55			
6	Nut and bolt	Pack of 10pcs.	10	\$3.47	\$3.47			
7	Stack Weight Pin	Used to attach the secondary handle to the main bar	2	\$4.75	\$9.50			
8	Secondary Bar attachment dock	Dock that will be used to connect the secondary bar to the main bar.	2	\$1.33	\$2.66			
Total			\$73.68					

- Analytical and Focused of Low Fidelity
- Used to Test feasibility of selected hinge mechanism

Note: We were not able to get the parts needed for a physical prototype so part specifications were used to create a solidworks model.

- Focused, physical, medium fidelity
- Mainly focused on main bar
- Used to test the strength of the hinge and the main PVC pipes.
- Also used to test if the connection method between the pvc pipes and the hinge was sufficient for everyday use.

Feature	Testing Method	Target Metric	Achieved Value
Total Weight	Scale	< 5 lbs	< 2 lbs
Total Length While Folded	Rulers/Measuring Tape	< 40 cm	38 cm
Weight Supported by main Bar	Use of set weights and rope (Weights)	> 30 lbs (Center of main bar)	> 40 lbs
Length of Main Bar	Rulers/Measuring Tape	< 75 cm	68 cm

- Focused, Physical, High Fidelity
- Used to test the multi-sided function of the secondary bar using the mount and pins
- Also used to test if the glue we used would be strong enough for this application
- Tested the durability of the clamps

Feature	Testing Method	Target Metric	Achieved Value		
Total Weight	Scale	< 5 lbs	< 2 lbs		
Time to assemble	Timer/Stopwatch	< 45 seconds	< 30 seconds		
Time to attach to walker	Timer/Stopwatch	< 30 s	< 5 s		

Issues Faced

- Not being able to meet with the client in person
- Not being able to physically see the walker we were designing the solution for
- Needing to make some alterations to materials and parts
 - The hinge we were looking at became out of stock, causing us to need to switch our method of attachment between the pvc pipes and the hinge.

Skills Learned

Machining procedures

Designing for manufacturing (Picking the right materials)

Designing 3D models

3D Printing

Lessons Learned

- Having a proper testing plan allows for the prototyping phase to have much less risk and provide a greater outcome.
- Failure is good if you are able to learn from it and adapt for the next hurdle.
- Understanding the reasoning behind each design process step makes it much easier to completely fulfill the need put forward by the client.

Future Work

- Testing product with client.
- Updating our design to work with any walker.
- Adding a single-handed braking component.
- Continuing to build our business.
 - Generate more ideas based off of customer reviews/feedback.
 - Design our own walker.

THE FAST AND FABRICATING FIVE We wheely care

Questions?