
GNG 1103 – Engineering Design

Project Deliverable G

 Prototype II and Customer Feedback

Group#15

Lucas Siviero St#300178151

Noah Aynalem St#300166191

Rakshita Mathur St#300215340

Riley de Gans St#300170104

Timi Tella St#300128051

Date: March 14, 2021
 Presented to Justine Lucie Boudreau

Table of contents

1.0 Introduction 1

2.0 General Prototyping Objectives 1

3.0 Prototyping Objectives, Tests & Results 1
3.1 Sensor Case Prototyping Objective 1
3.2 Sensor Case Test and Results 2
3.3 Arduino Module Prototyping Objectives 4
3.4 Arduino Module Test Results 4
3.5 Accelerometer Circuit Test Objectives 5
3.6 Accelerometer Circuit Test Results 5
3.7 Serial Communication Objectives 6
3.8 Serial Communication Test Results 6
3.9 Consolidated Code Objectives 6
3.10 Consolidated Code Test Results 6
3.11 Consolidated Circuit Objectives 7
3.12 Consolidated Circuit Tests and Results 7
3.13 Jerk Algorithm Test Objectives 8
3.14 Jerk Algorithm Test Results 8
3.15 Climate Sensor Test Objectives 9
3.16 Climate Sensor Test Results 9

4.0 Conclusion 10

1.0 Introduction
Having completed the first prototype of the climate-shake alarm sensor, the group has a

much-improved understanding of the capabilities and limitations of the module. With the code having

been completed, and most of the materials arrived, the time for more comprehensive prototypes has

arrived. These physical prototypes will help the group even more in creating the best possible module for

JAMZ by providing the group with more realistic and comprehensive results from testing. This will allow

the group to change and tweak the module, and result in better more accurate outcomes for the client.

The prototypes documented below serve to test the dimensional and functional capabilities of each

sub-system—physically validated dimensions of the electronic components compared to their respective

cases, a mock serial communication between two Arduinos, benchmarked values for future temperature

sensor testing, temperature sensor testing using a traditional thermometer, and testing the jerk algorithm

under various conditions.

2.0 General Prototyping Objectives
With last week’s testing on the various components and subsystems being successful, the goal

this week was to consolidate the various parts into one whole module. All the components that were

previously tested solos, such as the thermostat and the accelerometer, were tested in unison, with the

preliminary case designs being laser cut as well. Additionally, all the components were tested while

connected to the same circuit. This marked a shift towards more comprehensive and physical testing. The

reasoning behind more comprehensive testing is that with all the individual components having been

properly tested, the question facing the group was could these individual subsystems be combined into

one whole module?

The goal with prototyping this week is to ensure that there is no fatal flaw in the module and that

all the subsystems work together as well as they do separately. The goal with the casing is to ensure that

the dimensions were properly measured in the design online. The goal with the testing of the code is to

ensure that it can run in sequence on an Arduino, and that serial communication can be established.

3.0 Prototyping Objectives, Tests & Results

3.1 Sensor Case Prototyping Objective
The objective of the sensor module prototype is to correct the faulty dimensions for the screw

points of attachment, the inner dimensions where the sensors are housed, and to correct for the material

choice. The goal is to use physically verifiable dimensions of the sensors and screws benchmarked against

1

the first laser-cut prototype. The secondary objective with this new prototype is to update the weight

analysis and CAD model with the new dimensions obtained from test fitting the physical components in

prototype 1. In summary, these objectives utilize the verified physical metrics of the M3 screws as well as

the DHT22 and the accelerometer to update the case design with proper fitting cases.

3.2 Sensor Case Test and Results

The testing method used to correct for the dimensional errors was standard measurement using a

ruler. In the first laser-cut prototype the screws did not fit within the holes in the sensors properly, they

were too small for an M3 screw. The screw holes on the outside were also too small for the radius of an

M3 screw. The sensors themselves also had more room inside the case than necessary, so the outer case

dimensions can be reduced while maintaining the proper fitting of the sensors. The analysis below shows

the measurements of prototype 1 compared to the new measurements for prototype 2 obtained from trying

to fit test the sensors and screws in prototype 1. The weighted analysis is also updated with the correct

volume measurements for both prototypes 1 and 2 obtained from OnShape. Finally, version 2 of the CAD

model has been updated to reflect the new changes to the dimensions. Looking forward, this prototype is

still in progress as it needs to be made into a physical form so the same dimensional analysis can be done

to verify these dimensions with more certainty. This will be done using a laser-cut version of the part to

verify the dimensions of the part before a 3D print is attempted.

Figure 1: From the left, the first 4 photos show prototype 1 in both a CAD model and a laser cut

model. The last two photos show the CAD model for prototype 2.

2

Figure 2: Dimensional model comparing prototype 1 and 2 of the sensor module based on weight and

updated screw masses.

3

3.3 Arduino Module Prototyping Objectives
The objective for making the case module prototype for the Arduino was to verify that everything

was structurally sound and could fit all the components. This was tested by building the casing out of

MDF, attempting to put the completed circuit inside of it and exposing the case to impact and adverse

conditions such as rain.

3.4 Arduino Module Test Results
The testing proved that none of the Arduino case dimensions were correct. The length and width

were the exact sizes of the Arduino, so there was no room to insert it. The height forgot to account for the

size of the jumper wire endings and the mini-breadboard. The MDF material was not structurally sound,

collapsing very easily, and also ran into issues when exposed to moisture, becoming very soft and

flexible.

Figure 3: Dimensional model comparing prototype 1 and 2 of the arduino module based on weight

and updated screw masses.

4

3.5 Accelerometer Circuit Test Objectives
The objective for the accelerometer circuit was to confirm that the circuit, code and libraries

functioned together. This was tested using the Arduino IDE, a variety of different libraries and the circuit

from the previous prototype. A successful result would be outputting acceleration values to the serial

monitor that change when the sensor is moved.

3.6 Accelerometer Circuit Test Results
At first, the accelerometer would not work correctly, no matter which library, wire configuration

or code was implemented, as shown in the figure below. Each test was completed 6 times, with the SDA

and SCL pins, with the SCX and SDX pins and with 5K Ohm pull-up resistors to SDA and SCL, all with

2 different Arduinos. I2C detect code was also used to find the address of the sensor, returning null,

indicating bad wiring, bad code or faulty module. Most likely second or third given that all wiring configs

were followed. This was solved by ignoring the datasheet for the sensor, using 5V input instead of 3.3V

and resoldering the connections. When this change was made, there were successful results from the

sparkFun library, used with I2C wiring configuration and the sample code.

 Table 1 - Testing Wiring and Library Configurations for Accelerometer

5

Library Analog Pins (4,5) I2C Built-In Pins SPI (CS, SDA,
SAO, SCL =
10,11,12,13)

SparkFun Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

BMI 160 Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

Adafruit Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

SeeedStudio Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

No SPI
Compatibility

AST Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

No SPI
Compatibility

PoloLu Code compiled,
Failed to
Initialize IMU

Code compiled,
Failed to
Initialize IMU

No SPI
Compatibility

3.7 Serial Communication Objectives
Communication between the client’s computer and the Arduino on the module is important, and

so an important part of the code is incorporating serial communication. Testing for this was done using

two Arduino boards, and the main goal was to ensure that serial communication could be implemented in

the consolidated code in as simple a way as possible. The testing was done by connecting the two boards

at their RX TX pins, and writing some code to send a string of data from one to the other. If the

communication was successful, then in the serial monitor the data that was sent would be printed. To run

the test code, the usage of the Arduino library SoftwareSerial was required.

3.8 Serial Communication Test Results
At first, the code that was written did not compile at all, due to an avrdude error being thrown by

the board. After researching, the cause of this was determined to be due to the usage of pins 0 and 1 on

the Arduino board, and so initializing different pins was determined to be the best course of action. So

after only changing the pins that were used to transmit the data, the tests were successful, and the results

showed that using the serial port to communicate between Arduinos required few simple lines of code.

These lines of code are very easy to implement, and in no way do they affect any rate-determining steps

or other facets of the consolidated code.

3.9 Consolidated Code Objectives
The objective for consolidating the code was to confirm that all the code functioned the same way

in the void loop section, shared the same rate-determining steps and could provide sufficient output with

every half a second per JAMZ criteria. The testing was done by first testing the individual parts and code.

Then, the void loop sections of the code were analyzed for delays and how readings were taken. Next, the

complete circuit was created and the codes were combined to only take 1 reading each per void loop,

deciding an appropriate rate for the void loop to run and outputting data at the appropriate intervals.

Finally, the consolidated code was tested by compiling the code and viewing the results in the serial

monitor. If the test was successful there would be data printed on the serial monitor every half a second

with no compilation errors and no run-time errors.

3.10 Consolidated Code Test Results
At first, we ran into issues because both codes were taking all their required readings in one void

loop, with multiple delays within each loop. This was adjusted so that each sensor took one reading per

loop, one delay was used for each loop and data was outputted every fifth void loop. Once the code was

compiled there was another error with a null-pointer exception due to a wiring issue with a DHT-22

6

sensor, this was fixed quickly. After this, the appropriate data was outputted to the serial monitor correctly

every half a second as desired.

3.11 Consolidated Circuit Objectives
The objective for consolidating the circuit was to ensure that all the components functioned and to

determine the number of wires required in the through cable. The goal was to minimize this number while

also maintaining functional components and safety. The test was conducted by first using leads to test all

the ground and voltage connections. Then all of the components were connected and tested using the

consolidated code. Because of the nature of this test the consolidated code and circuit were co-requisites

for success in a way because each will only have the correct output if the other works. A successful test

would have the same output as the consolidated code test and determine the optimal number of wires to

use without the danger of short-circuiting.

3.12 Consolidated Circuit Tests and Results
Immediately, as expected all of the components worked correctly after the one small issue with

the DHT-22 wiring was fixed. It was determined that 7 wires were needed as shown in the following table

below. This number was confirmed using LEDs to test for short-circuiting as described in the objectives.

There were no issues and this number could not be reduced any more, as all wires were essential. The

table could not be shown on tinkercad as none of the parts were available for use. A figure of the wiring is

provided below and further explained in the table.

Figure 4: Showing the whole circuit, including the thermostats and the serial communication between

Arduino

 Table 2 - Results from Testing Number of Wires Required

7

Wire Function Wire Destination (s)

3.13 Jerk Algorithm Test Objectives
Jerk is a relatively abstract measure compared to displacement, velocity or even acceleration.

Because of this, the test objectives were to use practical experimentation, in as controlled a manner as

possible. Using the previously tested circuit and code the accelerometer was tested under a variety of

movement patterns that it may experience and the binary output for a jerk or no jerk was recorded. The

jerk values could have been measured, but because of the low accuracy of the sensor, noise levels and

difficulty of determining units, instead, a relative comparison approach was taken. The code was designed

so that if a non-zero (with noise-reducing functions applied) jerk was detected multiple times in a period

of time a violent shake was detected. A successful test would show that only violent shaking gives a true

jerk binary output.

3.14 Jerk Algorithm Test Results
At first, the jerk algorithm was constantly outputting that a jerk was occurring. This was fixed by

applying a small threshold for the jerk, thus ignoring any jerk caused by different noise levels from the

accelerometer. After this was applied the algorithm worked exactly as expected, as shown in the table

below and the linked video. The next step for this test would be to find a way of having quantitative input

for acceleration values.

Prototype testing video for jerk algorithm.

 Table 3 - Test Results for Jerk Algorithm Using Different Movements

8

5V LSMDS3 VIn

3.3V DHT-22 #1 VCC, DHT-22 #2 VCC

DHT #1 Signal DHT-22 #1 Signal

DHT #2 Signal DHT-22 #2 Signal

LSM6DS3 SDA Signal LSM6DS3 SDA Signal

LSM6DS3 SCL Signal LSM6DS3 SDA Signal

Ground LSM6DS3 GND, DHT-22 #1 GND, DHT-22
#2 GND

Total Number of Wires 7

Movement Type Jerk Result (T/F)

Uniform Straight Line Acceleration in X F

https://drive.google.com/file/d/1nLcb5wC8pwUpBZsOYC1tD82n6ZS_9y11/view?usp=sharing

3.15 Climate Sensor Test Objectives
The objective of the climate sensor testing was to measure the accuracy of the sensors against an

industrial temperature and humidity sensor. Because of the time constraints, these tests were only

conducted with room temperature conditions and ranges. In future prototypes, the sensors will be tested in

a variety of environments. The test results will be the average difference between the results from our

sensors and the trusted sensor.

3.16 Climate Sensor Test Results
As shown in the figure below the average accuracy of our climate sensors was around +- 0.5 degrees

celsius. This matches the criteria provided by JAMZ. The next step will be more in-depth testing and

comparison with accompanying visual representations of data and applying the results in the code to

improve accuracy. In addition, by finding the ranges of temperature and humidity for the food delivery we

can modify the code and can provide a binary output if the temperature is not in the desired range and so

does the humidity. The code will be modified such that, it will take the first average temperature reading

to determine whether the food is hot or cold. Then will call the functions to determine if its temperature

and humidity are in the benchmarked range for hot and cold food, respectively. Further, the code will be

tested with an ice cream in the cardboard box for the cold food and a hot-coffee for the hot food. The

serial monitor will show a boolean output true if the food is in the correct temperature and humidity range

and false it is not.

9

Uniform Straight Line Acceleration in Y F

Uniform Straight Line Acceleration in Z F

Uniform Straight Line Acceleration in X and
Reverse Direction

F

Uniform Straight Line Acceleration in Y and
Reverse Direction

F

Uniform Straight Line Acceleration in Z and
Reverse Direction

F

Circular Motion in XY F

Circular Motion in YZ F

Circular Motion in XZ F

Random Violent Shake in XY T

Up and Down Violent Shake in Z T

Figure 5: Showing the running code with output. Tested by the thermometer.

Table 4 - Benchmarking the temperature-humidity Ranges

4.0 Conclusion
Having completed the second phase of prototyping for this project, the group feels much more

confident and assured in all aspects of the module and project as a whole. Results from the testing

demonstrate that serial communication is straightforward and that the code that has been written can give

proper results from Arduino’s readings. Furthermore, once the circuit is assembled completely it functions

properly, and no component receives less voltage/current than it needs. With regards to the casing,

incorrect dimensions were identified and fixed promptly. This caught a potential error right in its tracks.

The results are positive as a whole and put the group one step closer to finishing the design.

In the next phase, the circuit will be put inside the casing, and the module itself will be tested for

functionality. This will mark a shift to testing that is solely physical and comprehensive, in an attempt to

tie a bow on this iteration of the prototyping phase.

10

 Skip the dishes Doordash Uber Eats

Temperature
Range

Humidity Range 50-55% 50% 50-55%

Hot
Food

Cold
Food

57 C or
Higher

5 C or
lower

Hot Food Cold
Food

50 C or
Higher

5 C or
lower

Hot
Food

Cold
Food

55 C or
Higher

5 C or
lower

● Find library, code and wiring configuration for accelerometer
● Consolidate the code into one file that can be run consecutively on the Arduino
● Confirm that all the components function properly once they are put together in one

circuit
● Evaluate the first cases that are made, and improve on any deficiencies
● Benchmark the temperature and humidity ranges of the food delivery system in Canada
● Test jerk algorithm under various condition
● Measure humidity and temperature accuracy

11

