

Faculty of Engineering

GNG 1103

Hot Car Emergency

BabySafe by Arccode - User Guide

Team Members

Ekene Ebenebe

Kayden Wang

Nalida Awog-Badek

Nicole Meouch

Owen Haralovich

December 8, 2021

Abstract

The goal of this document is to highlight a user guide for the BabySafe device. This report

covers the prototype design process, and the final design assembly.

Table of Contents
Introduction ... 4

Relevant Softwares and Applications Used .. 5

Computer Aided Design ... 5

Simulations and Functionality .. 5

Bill of Materials ... 6

Prototype review and Replication ... 6

Design functionality flow chart ... 6

Prototype Model views and Features .. 7

Programming design Library and codes ... 7

Component Circuitry .. 8

Part Production and Assembly .. 8

Conclusion ... 9

Appendix .. 10

Table of Figures

Figure 1: Bill of Materials ... 6

Figure 2: Functionality Flow Chart ... 6

Figure 3: Top View of Prototype .. 7

Figure 4: 3d View of Prototype... 7

Figure 5: Circuitry ... 8

Introduction

For this project, our client, Mansour Kharoub, is an engineer working in the United Arab Emirates

(UAE). We have been tasked with designing a child monitoring system that alerts the guardian

and passerby of a vehicle that a child is alone in the vehicle.

For our Prototype, we have addressed a major risk faced by an abandoned child in a vehicle, which

is high temperatures. Our design is such that any interested individual(s) can follow through to

replicate as well as improve on our solution. We had a budget of $50 to create our design and this

document will be a guide as to how we balanced our budget, and navigated risks to create our

design.

Relevant Softwares and Applications Used

Computer Aided Design

• Onshape: This is a cloud based CAD software. The casing for our design was created on

here. A link to the CAD files is attached to the Appendix of this document.

• Inkscape and Adobe Pdf: Inkscape is a free and open-source vector graphics editor. It

was used to format our CAD drawings, and casing engravings to Laser-cut graphics.

Adobe pdf was an interface between Inkscape and the Laser cutting machine Used for our

design.

Simulations and Functionality

• TinkerCad: This is a free online modelling program. The code for our design programming

was tested on here using virtual components to run simulations to fine tune our design

goals.

• Arduino: This is an open source electronic prototyping platform. We used an Arduino Nano

as the microcontroller running our design logic, so we used the Arduino IDE to upload

some already tested out programs to the microcontroller. Also, we utilised the vast code

library available on Arduino to maximize functionality of our design components.

Bill of Materials

Figure 1: Bill of Materials

Prototype review and Replication

Design functionality flow chart

Figure 2: Functionality Flow Chart

Prototype Model views and Features

Figure 3: Top View of Prototype

Figure 4: 3d View of Prototype

Prototype Features

• Detect motion

• Detect temperature change

• Trigger Alarm

Programming design Library and codes

All codes used are attached and tagged in the appendix of this document. They are split into the

individual components that represent the features of our project, and a final code which is a

network of all the components to function as a unified device.

Ultrasonic sensor
Push Button &

Thermistor

PIR Sensor

Speaker

Component Circuitry

For this project, some components will not be available on tinker cad, but substitutes will be used

for simulation purposes.

Arduino nano pins and component assignment

• A0 => Thermistor
• D3 => Amplifier A+
• D8 => PIR Sensor
• D10 => Ultrasonic Sensor Echo
• D12 => Ultrasonic Sensor Trigger

Figure 5: Circuitry

Part Production and Assembly

Onshape link shows access to the casing part file which includes a drawing that can be exported

as a dxt file, then imported into Inkscape. Once on Inkscape, go to the top menu and click on fill

and stroke, click on stroke style, and change the width to 0.001mm. you’ll notice the drawing

seems to disappear, but this is normal as it’s the setting for a vector cut to cut out the casing. After

setting the stroke style, save as adobe pdf and ensure the resolution for rasterization is set at 600dpi.

Then you’re ready to laser cut. For the engravings, already edited pdf pics are attached to this

document as well as other relevant docs available on the maker repository attached in the appendix

of this document.

Soldering

Beginner level soldering skills are adequate for this project. Ensure that the heat is kept far from

the components especially the PIR sensor. Best fit is advised for soldering, so it’s important to

measure wires and place on intended location before actual soldering. Also do not solder the PIR,

Ultrasonic sensor and thermistor. Use Male and Female jumper cables to interface between

Soldered wires and components. This helps for easy troubleshooting with the Arduino.

Box Assembly

Refer to hand sketch in fig. 5 to get an idea of component placement. Laser cut boxes are usually

a tight fit but, in a case, where gluing is needed, leave access to the Arduino nano usb connector

for easy trouble shooting as well

Conclusion

This was an exciting project to complete, most of the tasking work was in the soldering and

troubleshooting, so its important to always measure first before machining. Overall, this prototype

was well received by the client. Possible improvements include; Application to sync with the

device for a better user experience, this will involve connecting additional components to the

Arduino pins and resizing the box to fit everything. All links provided are easily edited to suit

future needs.

Appendix

Onshape Link:

https://cad.onshape.com/documents/0029f90d0566c2041caa784e/w/dee985985cd52e04268a2816/e/a0bbe

c286821da951b344090

Maker repo Link:

https://makerepo.com/Ekene/1058.hot-car-emergency-babysafe-by-arcode

Code Library:

Speaker Tones

#include "pitches.h"

// notes in the melody:

int Emergencymelody[] = {NOTE_C4,};//Hot Car Emergency Tone

// note durations: 4 = quarter note, 8 = eighth note, etc.:

int noteDurations[] = {

 4, 8, 8, 4, 4, 4, 4, 4

};

void setup() {

 // iterate over the notes of the melody:

 Serial.begin(9600);

}

void loop() {

 // no need to repeat the melody.

 for (int thisNote = 0; thisNote < 1; thisNote++)

 {

 // to calculate the note duration, take one second divided by the note type e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

 int noteDuration = 1000 / noteDurations[thisNote];

 tone(3, Emergencymelody[thisNote], noteDuration);

 int pauseBetweenNotes = noteDuration * 1.30;// to distinguish the notes, set a minimum time between them. the note's duration + 30% seems
to work well:

 delay(pauseBetweenNotes);

 // stop the tone playing:

 noTone(3); }}

PIR Code

https://cad.onshape.com/documents/0029f90d0566c2041caa784e/w/dee985985cd52e04268a2816/e/a0bbec286821da951b344090
https://cad.onshape.com/documents/0029f90d0566c2041caa784e/w/dee985985cd52e04268a2816/e/a0bbec286821da951b344090

int ampOff = 4;//AMP Shutdown

int PirAlarm = 3;//Speaker buzzer pin

//pir

int Pirsensor = 8;//the pin that the sensor is attached to

int PirState = LOW;//default to show no motion detected

int sensorvalue;//to store sensor status

void setup()

{

 pinMode(ampOff, OUTPUT);

 digitalWrite(ampOff, LOW);

 pinMode(Pirsensor, INPUT);

 Serial.begin(9600);

}

void loop()

{

 //pir

 sensorvalue = digitalRead(Pirsensor);//read value on sensor

 if (sensorvalue == HIGH)// check if the sensor is HIGH

 {

 digitalWrite(PirAlarm, HIGH); //turn speaker ON

 Serial.println("Motion detected!");

 delay(500); // delay 500 milliseconds

 }

 else

 {

 digitalWrite(PirAlarm, LOW); //turn speaker OFF

 delay(500);// delay 500 milliseconds

 digitalWrite (ampOff, HIGH);

 Serial.println("Car is empty!");

 }}

Ultrasonic Sensor Code
// Ultrasonic Sensor Code

const int trigPin = 12;

const int echoPin = 10;

// defines variables

long duration;

int distance;

void setup()

{

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

 pinMode(echoPin, INPUT); // Sets the echoPin as an Input

 Serial.begin(9600); // Starts the serial communication

}

void loop()

{

 // Clears the trigPin

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 // Sets the trigPin on HIGH state for 10 micro seconds

 digitalWrite(trigPin, HIGH);

 delay(500);

 digitalWrite(trigPin, LOW);

 // Reads the echoPin, returns the sound wave travel time in microseconds

 duration = pulseIn(echoPin, HIGH);

 // Calculating the distance

 distance = duration * 0.034 / 2;

 if (distance >= 40)

 {

 Serial.print("Distance = ");

 Serial.println(distance);

 Serial.println("Driver out of car, check for movement and temperature!!!!!");

 }

 else

 {

 Serial.print("Distance: ");

 Serial.println(distance);

 Serial.println("Driver Inside car, all good");

 }}

Thermistor Code
//Thermistor code

int ThermistorPin = A0;

int Vo;

float R1 = 100000;

float logR2, R2, T;

float c1 = 1.009249522e-03, c2 = 2.378405444e-04, c3 = 2.019202697e-07;

void setup()

{

 //Thermistor Code

 pinMode(8, OUTPUT);//assign led to pin 8

 Serial.begin(9600);

}

void loop()

{

 //Thermistor Code

 Vo = analogRead(ThermistorPin);

 R2 = R1 * (1023.0 / (float)Vo - 1.0);

 logR2 = log(R2);

 T = (1.0 / (c1 + c2 * logR2 + c3 * logR2 * logR2 * logR2));//Temp in kelvins

 T = T - 273.15;//Temp in degree celcius

 // T = (T * 9.0) / 5.0 + 32.0;

 if (T > 28)

 {

 digitalWrite(8, HIGH); //turn on led

 delay(500);//delay for one second

 }

 else

 {

 digitalWrite(8, LOW); //turn off led

 }

 Serial.print("Temperature: ");

 Serial.print(T);

 Serial.print('\n');

 // Serial.println(" F");

 delay(1000);

}

Full System Code
#include "pitches.h"

#include <Buzzer.h>

// Ultrasonic Sensor Code

const int trigPin = 12;

const int echoPin = 10;

long duration;

int distance;

//Speaker code

int melody[] = {NOTE_A4, NOTE_B4, NOTE_C3, NOTE_A4, NOTE_B4, NOTE_C3}; // notes in the melody

int thisNote; int noteDuration; int pauseBetweenNotes;

int noteDurations[] = { 4, 8, 8, 4, 4, 4, 4, 4}; // note durations: 4 = quarter note, 8 = eighth note, etc.:,

//PIR Code

int Pirsensor = 8; //the pin that the sensor is attached to

int PirState = LOW; //default to show no motion detected

int sensorvalue; //to store sensor status

//Thermistor Code

int ThermistorPin = A0;

int Vo;

float R1 = 100000;

float logR2, R2, T;

float c1 = 1.009249522e-03, c2 = 2.378405444e-04, c3 = 2.019202697e-07;

void setup()

{

 Serial.begin(9600);

 //Ultrasonic sensor code

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output

 pinMode(echoPin, INPUT); // Sets the echoPin as an Input

 //Speaker Code

 for (thisNote = 0; thisNote < 8; thisNote++) // iterate over the notes of the melody:

 {

 // to calculate the note duration, take one second divided by the note type.

 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.

 noteDuration = 1000 / noteDurations[thisNote];

 // to distinguish the notes, set a minimum time between them, the note's duration + 30% seems to work well:

 pauseBetweenNotes = noteDuration * 1.30;

 }

 //PIR Code

 pinMode(Pirsensor, INPUT);

}

void loop()

{

 //Ultrasonic Sensor Code

 digitalWrite(trigPin, LOW);// Clears the trigPin

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);// Sets the trigPin on HIGH state for 10 micro seconds

 delay(500);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);// Reads the echoPin, returns the sound wave travel time in microseconds

 distance = duration * 0.034 / 2; // Calculating the distance

 //PIR Code

 sensorvalue = digitalRead(Pirsensor);//read signal from sensor

 //Thermistor Code

 Vo = analogRead(ThermistorPin);

 R2 = R1 * (1023.0 / (float)Vo - 1.0);

 logR2 = log(R2);

 T = (1.0 / (c1 + c2 * logR2 + c3 * logR2 * logR2 * logR2));//Temp in kelvins

 T = T - 273.15;//Temp in degree celcius

 //Use Ultrasonic sensor to activate system

 if (distance <= 20) //reverse is the case, but i am adjusting for the Ultrasonic sensor sensitivity

 {

 Serial.print("Distance = ");

 Serial.println(distance);

 Serial.println("Driver out of car, check for movement and temperature!!!!!");

 if (sensorvalue == HIGH)// check for movement inside the car

 {

 //Turn Speaker ON

 tone(3, melody[thisNote], noteDuration);

 delay(pauseBetweenNotes);

 noTone(3); noTone(3); // stop the tone playing:

 Serial.println("Motion detected!");

 Serial.print("Temperature: ");

 Serial.print(T);

 Serial.print('\n');

 delay(500);

 }

 //Multiconditional code, to check that there's movement and the car is hot.

 if (sensorvalue == HIGH && T > 24)// check if there's movement and high temperature {

 //Turn Speaker ON

 tone(3, melody[thisNote], noteDuration);

 delay(pauseBetweenNotes);

 noTone(3); noTone(3); // stop the tone playing:

 Serial.println("Motion detected! Hot Car Emergency!!!");

 Serial.print("Temperature: ");

 Serial.print(T);

 Serial.print('\n');

 delay(500); // delay 500 milliseconds

 } }

 else

 {

 Serial.print("Distance: ");

 Serial.println(distance);

 Serial.println("Driver Inside car, all good");

 delay(500);

 }

 delay(1000);

	Introduction
	Relevant Softwares and Applications Used
	Computer Aided Design
	Simulations and Functionality

	Bill of Materials
	Prototype review and Replication
	Design functionality flow chart
	Prototype Model views and Features
	Programming design Library and codes
	Component Circuitry
	Part Production and Assembly

	Conclusion
	Appendix

