Deliverable G

Prototype 2 and Client Feedback

GNG 1103 Design

To: Professor David Knox And Pankaj Kumar Rathi/Chetan Kumbhar

By: Jack Bridgeland Wei Chen Nicolas O'Brien Balpreet Singh Johann Wehrstedt

Team: Eternal Hoptimists Submission Date: November 13th, 2022

> University of Ottawa Faculty of Engineering

Table of Contents

Introduction	3
Feedback from Client Meeting 3	4
Prototyping	4
Clock Module	4
Code for Clock Module	5
Bluetooth Sensor	6
Pressure Sensor + Temperature Sensor	8
Code for Pressure Sensor + Temperature Sensor	9
Final Prototype	11
Code for Final System	11
Analysis	15
Pressure Sensor Analysis	15
Changes Since Deliverable F	16
Updated BOM	16
Updated Component Links	
Prototype Test Plan	
3D Printing Requirements	
Wrike Link and Project Plan	20

Introduction

In this report, our team will discuss the feedback received during client meeting 3 with Shane from Beyond the Pale, our team will be outlining the different prototypes used in phase 2 of our prototyping sequence and we will be outlining a new prototyping test plan for the final prototype.

Feedback from Client Meeting 3

On November 8, 2022, our team was able to have our 3rd client meeting with Shane from Beyond the Pale Brewing Company. This meeting involved a pitch presentation which was given by Jack Bridgeland. During this presentation, Jack pitched our current idea of using the difference in height and pressure to determine density which can then allow us to determine specific gravity. Jack was also able to ask Shane a couple questions and receive some feedback. Shane's major comments and concerns were that our pipe casing which is in the tank must be food-safe due to regulations placed on companies like Beyond the Pale by the Canadian Food Inspection Agency and he also re-stated that he wants the device to be easily installable to simplify the lab techs job. To ensure easy installation, we will be using quick-connect wires to efficiently connect the different pieces of the system. To ensure our device is food safe, the housing for the pressure sensors will be made of stainless steel (The prototype will be made from aluminum due to the access we have to aluminum).

Prototyping

Clock Module

To prototype the clock module, I wired the real-time clock module to the Arduino using 4 jumper cables as seen below in figure 1. The first step to prototyping this module was to first set the time. Once the time was set, I unplugged the sensor for the Arduino and let it sit unplugged for 16 hours. After those 16 hours, I ran a code to display what day and time it was, and the sensor correctly displayed the correct time as seen in figure 2.

Figure 1: Clock Module Prototype

© COM6					_		×
						Se	nd
9//11/2022 2:53.49							
9/11/2022 2:53.50							- 1
9/11/2022 2:53.52							- 1
9/11/2022 2:53.53							- 1
9/11/2022 2:53.54							- 1
9/11/2022 2:53.55							- 1
9/11/2022 2:53.56							- 1
9/11/2022 2:53.57							- 1
9/11/2022 2:53.58							- 1
9/11/2022 2:53.59							- 1
9/11/2022 2:54.0							- 1
9/11/2022 2:54.1							- 1
9/11/2022 2:54.2							- 1
9/11/2022 2:54.3							- 1
							- 1
							- 1
							- 1
Autoscroll 🗌 Show timestamp	Sheudd you select is line eading	Newline	~	9600 bau	d ~	Clear out	out
tes.							
for local variables. Maximum is 2048 bytes							
						Arduino	Uno on
		~	-	ENG	ক ব <u>)</u>	*D 22	54 PN

Figure 2: Date/Time Output from the Real-Time Clock Module vs Date/Time on Laptop

Code for Clock Module #include <Wire.h> #include <ds3231.h>

struct ts t;

void setup() {
 Serial.begin(9600);
 Wire.begin();
 DS3231_init(DS3231_CONTROL_INTCN);

//t.hour=10; //Set following parameters to current time if clock isnt set up and uncomment the lines //t.min=53; //t.sec=30; //t.mday=8;

//t.mon=11; //t.year=2022+100; //DS3231_set(t); }
void loop() {
 DS3231_get(&t);

```
Serial.print(t.mday); //Displays current data and time
Serial.print("/");
Serial.print(t.mon);
Serial.print("/");
Serial.print(t.year);
Serial.print(t.hour);
Serial.print(t.hour);
Serial.print(t.min);
Serial.print(t.min);
Serial.print(t.sec);
delay(1000);
```

```
}
```

Bluetooth Sensor

To test our Bluetooth sensor, our HC-05 Bluetooth module will be connected to the Arduino as seen in figure 3. To ensure our system can connect to our software and transfer the correct data, we will be using dummy variables with known values, and we will test to see if our software is able to receive them. We will stop testing until the correct values are being received. Unfortunately, our team was only able to establish one-way connection from the module making me believe the transmission pin somehow got fried. We will look into other methods on how to send data to our computer. We were able to send commands from my tablet to the Arduino as seen in figure 4 and 4' but commands were not being received from the Arduino to the tablet.

Figure 3: Bluetooth Prototype

Figure 4: Data being Received by Bluetooth Connection

Figure 4': Data being sent to the Arduino

Pressure Sensor + Temperature Sensor

To prove that our concept works, we decided to prototype it by wiring our 2 pressure sensors and the temperature sensor to the Arduino using a breadboard and jumper wires as seen in Figure 6. To simulate the tank, we grabbed a bucket and filled it with water. We then submerged the bottom pressure sensor in the bottom of the bucket, and we held the other sensor 0.27305m higher than that point as seen in figure 5. By doing this, we were able to get specific gravity in a consistent range of 0.94-1.04. A screeenshot of these results cannot be provided as our computer crashed after our prototype was taken apart deleting the COM port with the data, but we had our written data to keep track of our results. The expected result of this experiment was to be 0.99 so we had an error of approximately ±0.05. Since we were

holding the sensor in place with our hands, our height was as precise as human error allows for so an error of ± 0.05 with human error is very good as a proof of concept. It could have also been due to not having a perfect measurement of the height as well. It is our hope to be able to get a more accurate reading of the specific gravity in our next prototype test.

Figure 5: Pressure Sensor Prototype

Figure 6: Prototype Wiring

Code for Pressure Sensor + Temperature Sensor

#include <Wire.h>
#include <OneWire.h>

#include <DallasTemperature.h>

int Psensor1 = A2; int Psensor2 = A3;

float APZero = 102.4 ; //Analog Pressure Reading when P = 0 Psi float APMid= 512; //Analog Pressure Reading when P=15 Psi float APMax = 921.6; //Analog Pressure Reading when P = 30 Psi int PressureMax = 30; // Max rated Pressure of Transducer is 30 Psi

float height = 0.27305; // This is the constant difference in Height in meters of the 2 Pressure Transducers float g = 9.81; //Gravitational Constant in N/kg or m/s^2 float row; // Value for the density of the fluid float rowWater = 998.23; //Density of water at 20 degree Celsius in Kg/m^3 float SG; //Value will be used to Store SG value float Plato; //Value will be used to store Plato conversion

float TopPressure;// Value will be used to store Psi value float BottomPressure; // Value will be used to store Psi value

float PaTop; // Value will be used to convert and store Psi to Pa float PaBottom;// Value will be used to convert and store Psi to Pa

float tempValue; // Value to Store Temperature Value
int tempPin=2;

OneWire oneWirePin(tempPin); //Defining temperature sensor DallasTemperature sensors(&oneWirePin); //Passing sensor through Dallas Temperature

```
void setup() {
```

Serial.begin(9600); sensors.begin();//Starting sensor to request data

```
}
```

```
void loop() {
TopPressure = analogRead(Psensor1); //Reads Analog value from the top pressure sensor
TopPressure = ((TopPressure - APZero)*PressureMax)/(APMax - APZero); //Converting Analog
Pressure to Psi
PaTop = TopPressure*6894.76; //Converting Psi to Pa
```

BottomPressure = analogRead(Psensor2); //Reads Analog value from bottom pressure sensor

BottomPressure = ((BottomPressure - APZero)*PressureMax)/(APMax - APZero); //Converting Analog Reading to Psi PaBottom = BottomPressure*6894.76; //Converting Psi to Pa

```
row = (PaBottom-PaTop)/(g*height);
```

SG = row/rowWater;

Plato = (-1*616.868)+(1111.14*SG)-(630.272*SG*SG)+(135.997*SG*SG*SG);

sensors.requestTemperatures();
tempValue = sensors.getTempCByIndex(0);// Getting Temperature Value

```
Serial.println("Pressure 1:");
Serial.println(TopPressure);
Serial.println("Pressure 2:");
Serial.println(BottomPressure);
Serial.println("SG:");
Serial.println(SG);
Serial.print("Temperature:");
Serial.println(tempValue);
```

delay(5000);

}

Final Prototype

Our final prototype will be completed for Prototype 3. Our code is currently all written and our prototype just needs to be wired.

Code for Final System

#include <IRremote.hpp>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <LiquidCrystal_I2C.h>
#include <Wire.h>
#include <SoftwareSerial.h>
#include <ds3231.h>

SoftwareSerial bluetooth(0, 1); //RX, TX

int Psensor1 = A2; int Psensor2 = A3; int tempPin = 2; int IR_RECEIVE_PIN = 3; //Connect IR sensor to Pin 3 int buttonpin = 4; //Connect Button to Pin 4

int i; // Used to enter in loop to measure data

```
float APZero = 102.4 ; //Analog Pressure Reading when P = 0 Psi
float APMid = 512; //Analog Pressure Reading when P=15Psi
float APMax = 921.6; //Analog Pressure Reading when P = 30 Psi
int PressureMax = 30; // Max rated Pressure of Transducer is 30 Psi
```

```
float height = 1; // This is the constant difference in Height in meters of the 2 Pressure
Transducers
float g = 9.81; //Gravitational Constant in N/kg or m/s^2
float row; // Value for the density of the fluid
float rowWater = 998.23; //Density of water at 20 degree Celsius in Kg/m^3
float SG; //Value will be used to Store SG value
float Plato; //Value will be used to store Plato conversion
```

float TopPressure;// Value will be used to store Psi value float BottomPressure; // Value will be used to store Psi value float PaTop; // Value will be used to convert and store Psi to Pa float PaBottom;// Value will be used to convert and store Psi to Pa

float tempValue; // Value to Store Temperature Value int buttonState; // Value to Save Current State of the Button

struct ts t; //Array for RTC

OneWire oneWirePin(tempPin); //Defining temperature sensor DallasTemperature sensors(&oneWirePin); //Passing sensor through Dallas Temperature LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27, 16, 2); //For 16 x 2 LCD Display

```
void setup()
```

{

IrReceiver.begin(IR_RECEIVE_PIN, ENABLE_LED_FEEDBACK); // Start the receiver Serial.begin(9600); //Start Serial monitor sensors.begin();//Starting Temp sensor to request data Icd.init(); //Initiallizing LCD Screen Icd.backlight();//Initiallizing LCD Screen pinMode(buttonpin, INPUT); // Set buttonpin as an input bluetooth.begin(9600); //Start Bluetooth

```
Wire.begin();
DS3231_init(DS3231_CONTROL_INTCN);
```

```
//t.hour=10; //Next 7 Lines are used to set time. If clock dies, replace battery and replace
values with your time to reset time
 //t.min=53; //switches minutes to 53
//t.sec=30; //switches seconds to 30
//t.mday=8; //switches day to the 8
//t.mon=11; //Switches month to the november
//t.year=2022 // switches year to 2022
//DS3231 set(t); //sets clock to selected time
}
void loop() {
if (IrReceiver.decode()) // Loop to receive input from remote
 {
  switch (IrReceiver.decodedIRData.decodedRawData) {
   case 0xBA45FF00://This is for the Start button on the remote
    i = 1; //Set i=1 to enter in loop to start measuring and saving data
    break;
   case 0xB946FF00://This is for the vol+ button
    i = 0; //This is to stop the loop
    break;
  }
  IrReceiver.resume(); // Enable receiving of the next value
 }
 if (i == 0) // If vol+ button is hit, it stops measuring data and displays following message
 {
  lcd.setCursor(0, 0); // Sets cursor on first row, first column
  lcd.print("Hit Start to");
  lcd.setCursor(5, 1); //Sets curson on fifth row, first column
  lcd.print("begin");
 }
 if (i == 1) //If Start button is hit, enter this function to begin measurements
 {
  sensors.requestTemperatures();
  tempValue = sensors.getTempCByIndex(0); // Storing Temperature Value
  TopPressure = analogRead(Psensor1); //Reads Analog value from the top pressure sensor
  TopPressure = ((TopPressure - APZero) * PressureMax) / (APMax - APZero); //Converting
```

Analog Pressure to Psi

```
BottomPressure = analogRead(Psensor2); //Reads Analog value from bottom pressure sensor
  BottomPressure = ((BottomPressure - APZero) * PressureMax) / (APMax - APZero);
//Converting Analog Reading to Psi
  PaBottom = 6.89476 * BottomPressure * 1000; //Converting Psi to Pa
  row = (PaBottom - PaTop) / (g * height);
  SG = row / rowWater;
  Plato = (-1 * 616.868) + (1111.14 * SG) - (630.272 * SG * SG) + (135.997 * SG * SG * SG);
  buttonState = digitalRead(buttonpin); //Read current state of button
  if (buttonState == HIGH) {
   lcd.setCursor(0, 0); // Sets cursor on first row, first column
   lcd.print("Plato:");
   lcd.print(Plato); // Print specific gravity in Plato
   lcd.setCursor(0, 1); //Sets cursor on first row, second column
   lcd.print("SG:");
   lcd.print(SG);//Print Specific Gravity
   lcd.print("kg/m3");
   delay(500);
   lcd.clear();
  }
  else if (buttonState == LOW) {
   lcd.setCursor(0, 0); // Sets cursor on first row, first column
   lcd.print("Temperature :");
   lcd.print(tempValue); // Print Temperature value on the screen
   lcd.setCursor(0, 1); //Sets cursor on first row, second column
   lcd.print(""); //Print whatever we need
   delay(500);
   lcd.clear();
  }
  if (Serial.available() > 0) // Send data only when you receive data:
  {
   DS3231_get(&t);
   bluetooth.print(t.mday); // send current day
   bluetooth.print("/"); // send a dash
   bluetooth.print(t.mon); // send current month
   bluetooth.print("/"); // send a dash
   bluetooth.print(t.year); // send current year
```

PaTop = 6.89476 * TopPressure * 1000; //Converting Psi to Pa

```
bluetooth.print(" ");// send a space
```

```
bluetooth.print(t.hour); // send current hour
bluetooth.print(":"); // send a semi colon
bluetooth.print(t.min); //send current minutes
bluetooth.print("."); //send a dot
bluetooth.println(t.sec); //send current seconds
bluetooth.print(","); //Send a comma
bluetooth.print(Plato); //Send value of Plato
bluetooth.print(","); //Send a comma
bluetooth.print(tempValue); //Send value of Temperature
bluetooth.print(";"); //Send a semi-colon
}
```

} }

Analysis

Pressure Sensor Analysis

During our test, we measured a high difference of 0.27305m between the bottom of the bucket and an arbitrary point we measure and marked on the bucket. Knowing that gravity is 9.81 m/s^2, we are able to determine the theoretical SG of our fluid which is water for this experiment according to the following equation:

SG = density of fluid/density of water SG = density of water/density of water SG = 1

Since the density of water is known, we can use the following equation to determine the expected difference in pressure:

 $\Delta P = pg\Delta h$ $\Delta P = 1000 * 9.81*0.27305$ ΔP theoretical =2678.621 Pa = 0.3885 Psi

During our test, we needed to hold the top pressure sensor with our hands which led to us getting values ranging between 0.94 - 1.04 for SG caused by human error due to fatigue of holding the sensor in place with shaky hands. This led to the following range of ΔP :

ΔP min=940*9.81*0.27305 ΔP min= 2517.9 Pa

ΔP max=1040*9.81*0.27305 ΔP min= 2785.77 Pa

2517.9 Pa< ΔP experimental < 2785.77

To determine this initial error, we are able to use the following formula

 $\mathsf{Error} = \frac{\Delta \mathsf{Pexperimental} - \Delta \mathsf{P} \text{ theoretical}}{\Delta \mathsf{P} \text{ theoretical}} x100$

Low bound error = $\frac{2517.9 - 2678.621}{2678.621} x100$

Low Bound Error = -6%

Higher Bound error = $\frac{2785.77 - 2678.621}{2678.621} x100$

Higher Bound Error = 4%

-6% < Error < 4%

Changes Since Deliverable F

Since the last deliverable, not much has changed in the objective of our project, the only change is regarding our Bluetooth module. The Makerspace/Maker Lab did not have the HC-05 module we needed so we needed to get one from Amazon. This change can be seen in our updated BOM below highlighted in yellow. The price of the sensors on Makerspace/Maker Lab was 12.99\$ while on Amazon, it is 13.78\$ so it is an increase of 0.79\$.

Updated BOM

Table 1: Updated Bill of Materials

Parts	Quantity	Unit of Measure	Unit Cost (\$)	Estimate Cost(\$)	Link			
Hardware Required								
Mil. Spec Aluminum Tubing								
10D 1ft Length	2	FT	0	0	Owned			
Aluminum Rod 1-5/8 Dia 1ft								
Length	1	FT	0	0	Owned			
Aluminum 2x6x1-1/2	1	EA	0	0	Owned			
Food Grade Silicone Sealant	1	EA	0	0	Owned			
3D printed Electrical					MakerLab (to be			
Compartment Bottom	1	EA	0	0	printed)			
3D Printing Filament	1	EA	10	10	MakerLab			
3D printed Electrical					Makerl ab (to			
Compartment Top	1	EA	0	0	be printed)			
O-Rings	6	EA	0	0	Owned			
Screws	8	EA	0	0	Owned			

Electrical Components Required							
Arduino	1	EA	0	0	Owned		
Breadboard	1	EA	0	0	Owned		
LCD Screen	1	EA	0	0	Owned		
Pressure Transducer Sensor 30 Psi	2	EA	13.49	26.98	See Deliverable F		
Latching Buttons	1	EA	0.54	0.54	See Deliverable F		
Bluetooth connection	1	EA	13.78	13.78	See Link Section		
DS18B20 Temperature Sensor	1	EA	14	14	See Deliverable F		
IR Sensor	1	EA	0	0	Owned		
Clock Module	1	EA	10	10	See Deliverable F		
Remote	1	EA	0	0	Owned		
4.7 KΩ Resistor	1	EA	0	0	Owned		
10 KΩ Resistor	1	EA	0	0	Owned		
10 KΩ Potentiometer	1	EA	0	0	Owned		
Wiring	50	EA	0	0	Owned		
	Sof	tware Requir	ed				
Arduino IDE	1	EA	0	0	Owned		
OnShape	1	EA	0	0	Owned		
Python	1	EA	0	0	Owned		
Libraries							
Liquid Crystal	1	EA	0	0	See Library Links		
OneWire	1	EA	0	0	See Library Links		
Spi	1	EA	0	0	See Library Links		
DS3231	1	EA	0	0	See Library Links		
Dallas Temperature	1	EA	0	0	See Library Links		
Irremote	1	EA	0	0	See Library Links		
Software Serial	1	EA	0	0	See Library Links		
Total Cost (75.30						
Total Cos	81.90						

Spreadsheet links:

https://docs.google.com/spreadsheets/d/1HLeKHimS2K6xT5xADkeC8T_iUnEW0eZaAFPuYZtyU 8s/edit#gid=0

Updated Component Links

To see all component links, please see the spreadsheet link or see Deliverable F

Bluetooth Module: https://www.amazon.ca/Wireless-Bluetooth-Module-Transceive-Serial/dp/B08GXTJ2V9/ref=sr 1 2 sspa?gclid=Cj0KCQiAmaibBhCAARIsAKUlaKSiJHGQFjf6SyfgH 6WR096vIeFgJUhos0QvWp5MAXcjAcd4FZ1qs8aAnwJEALw wcB&hvadid=596027847757&hvdev=c&hvlocphy=1 002376&hvnetw=g&hvqmt=e&hvrand=9460209702837723489&hvtargid=kwd-299124711286&hydadcr=4679 9338026&keywords=hc-05+wireless+bluetooth&qid=1667947866&qu=eyJxc2MiOiIxLjczIiwicXNhljoiMC4wMCIsInFzcCI6I jAuMDAifQ%3D%3D&s=electronics&sr=1-2-spons&psc=1

Prototype Test Plan

Table 2: Remaining Prototype Tests

ID	Test	Description of Prototype	Results to be	Duration of
	Objective		Recorded	Test
1	Determine	Our 2 pressure sensors will be	1.height of	Test will last
	accuracy of	connected to an Arduino and be	completed test	until we are
	pressure	tested in different liquids of known	2.the fluid used	within our
	sensor	density at different heights to test	3.temperature of	design spec
		accuracy	fluid	accuracy
			4.difference from	
			theoretical value	
2	Determine if	This prototype will consist of 2	1.Any bugs with	Test until the
	the whole	pressure sensors, 1 temperature	our code	system works
	system is	sensor, 1 Arduino, 1 LCD screen, 1	2.Input	as planned
	working	IR receiver, 1 button, 1 Bluetooth	conditions	
		module, 1 real-clock module.		

3D Printing Requirements

Our team will be printing the case shown in figure 7. This case contains a slot for the remote control to sit, a hole for the LCD screen, a hole for access to the battery, a hole for the button, a hole for the IR receiver and a threaded cylinder slot at the back of the case to connect it to the rest of the system as seen in figure 8. This print will take approximately 14 hours and 50 minutes.

Figure 7: Solidworks Case Model

Figure 9: 3D Printing Slice Preview and Time Estimate

Wrike Link and Project Plan

Our project plan for the remaining weeks is to combine all sensors and modules that have all been tested into one big prototype to ensure the system works correctly and can be tested further. Our team will also start printing the casing for the final prototype.

https://www.wrike.com/workspace.htm?acc=4975842&wr=20#folder/966341779/list?filters=s tatus%3Dactive&sidePanelItemId=985887791&sortOrder=1&spaceId=-1&viewId=108931260