## Group 3 Project Presentation

Cameron Carter Ben Sedgwick Hung Hoang Jason Liu Jean-Claude Kh<u>acho</u>



#### Mill Street Brewery's Needs

A solution that can:

-Measure the amount of dust in the silos

-Know if there's too much dust for the filtration system

-Be accurate

-Communicate with HMI system

-Easy and cheap to install, maintain, and operate



"Mill Street Brewery needs a system that can measure dust levels in malt silos in order to provide warning of excessive dust conditions that can clog up the filtration system. The system needs to communicate with the existing computer system about dust levels, as well as be accurate and easy to maintain and operate"



#### Benchmarking:

-Either used a laser or ultrasonic sensor -Detect dust as fine as 8 µg/m<sup>3</sup> -Had a ~5% accuracy range -Provided constant data -Gave a visual and audio alert -Attached to the top or side of the silo -Had a "simple installation" -Cost up to \$2000







#### Target Specifications

-Can detect dust as fine as  $8 \mu g/m^3$  with ~5% accuracy

-Can send data to the HMI system and can warn of high dust levels

-\$2000 or less including installation and future maintenance

-Can be easily accessed for maintenance

-Can withstand 600 kg/min of malt entering the silo

-Can operate between -20 to 80 °C





#### Concept Generation

#### Dust sensing, device mounting, and HMI connection

















#### Idea Comparison

| Dust detection                           | Cameron                                                   | Ben                                        | Hung                                      | Jason                                                            | JC                                                    |
|------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| Concept:                                 | DSM501A<br>Laser Dust<br>Sensor                           | PM2.5 Laser<br>Dust Sensor                 | ZH07 PM2.5<br>Laser sensor                | BinMaster<br>NCR80                                               | GP2Y1010AU0F<br>light reflector                       |
| Accurately<br>measures dust              | >1 micron, but<br>can detect<br>particles under<br>2.5 µm | 0.3-10 µm<br>accuracy                      | 0.3-10 µm<br>accuracy                     | 0.2 inch<br>accuracy, 393<br>ft distance<br>range                | Detects particles<br>larger than 0.8µm<br>in diameter |
| Detects<br>incoming dust<br>in advance   | Possible if<br>installed in silo                          | Possible if<br>installed in silo           | Possible if<br>Installed in silo          | Possible                                                         | Possible if<br>installed in silo                      |
| Make<br>recommendations<br>based on info | Arduino code<br>can<br>recommend<br>things                | Arduino code<br>can<br>recommend<br>things | Unsure if it can<br>connect to<br>Arduino | Coding can<br>calculate % of<br>dust and<br>recommend<br>things  | Arduino code can<br>recommend<br>things               |
| Operate under<br>different<br>conditions | <mark>-10-65 °C</mark>                                    | <mark>-20-50°C</mark>                      | - <mark>10-60°C</mark>                    | -30 to 120                                                       | -10 to 65°C                                           |
| Cost                                     | ~\$20                                                     | <mark>\$46.90</mark>                       | 13\$ not<br>included<br>shipping          | Not Sure<br>(probable<br>expensive as a<br>quote is<br>required) | Around \$15 to<br>\$20                                |

| HMI communication                            | Cameron                             | Ben                                 | Hung                    | Jason                                                            | JC                                     |
|----------------------------------------------|-------------------------------------|-------------------------------------|-------------------------|------------------------------------------------------------------|----------------------------------------|
| Concept:                                     | RS485<br>connection                 | RS232 cable +<br>Arduino<br>adaptor | RJ45 cable              | NCR80(Built in communication device)                             | USB Cable<br>Type A to B<br>connection |
| Can<br>communicate<br>with the HMI<br>system | Yes (wired)<br>Max Range:<br>1,200m | Yes via cable,<br>15m range         | Yes, 328 ft<br>range    | Yes (Remote),<br>can be<br>integrated to<br>the plant's<br>PLC   | Don't know                             |
| Make<br>recommendations<br>based on info     | Yes via<br>arduino code             | Yes via<br>arduino code             | Yes via<br>arduino code | Can send data<br>remotely to<br>existing<br>desktop              | Yes via<br>arduino code                |
| Cost                                         | ∼\$10 +<br>adapter                  | ~\$3 adapter +<br>~\$15 cable       | ~\$10 +<br>adapter      | Not Sure<br>(probable<br>expensive as a<br>quote is<br>required) | <del>~\$5</del>                        |

| Device<br>mounting                                  | Cameron                                                                                         | Ben                                                                                           | Hung                                                    | Jason                                                                                          | JC                                                                  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Concept:                                            | 3D printed<br>case enclosing<br>the device with<br>room for 2 25lb<br>magnets to be<br>embedded | 2x steel bolts<br>on side of silo<br>attached to<br>device housing                            | 4x stainless<br>steel bolts to<br>device case           | Rail/Pully<br>System                                                                           | Screw with<br>zinc plated<br>steel bolt and<br>nut from the<br>case |
| Easy to install                                     | Yes;<br>non-invasive                                                                            | Requires<br>drilling into<br>silo, but fairly<br>simple                                       | Requires<br>drilling into<br>silo, but fairly<br>simple | Somewhat<br>complex<br>installation(inst<br>alling rails &<br>chain)                           | Requires<br>drilling into<br>silo, but fairly<br>simple             |
| Size/Fits<br>where it's<br>meant to be<br>installed | Variable size;<br>likely fits in<br>silo, holds up<br>to 50 lbs                                 | Variable size<br>but should<br>easily fit on the<br>side of the silo                          | Side or top of<br>the silo                              | Under the roof<br>of Silo(should<br>fit)                                                       | Yes                                                                 |
| Accessibility                                       | Could be<br>removed from<br>the inside                                                          | Can be<br>unscrewed for<br>maintenance                                                        | Can be<br>unscrewed for<br>maintenance                  | Can be easily<br>accessed<br>using a level &<br>hatch                                          | Can be<br>unscrewed for<br>maintenance                              |
| Operates<br>under different<br>conditions           | Magnets could<br>likely withstand<br>the expected<br>temperature<br>range                       | Steel bolts<br>work well<br>under many<br>temperatures,<br>may rust if<br>exposed to<br>water | Stainless Steel<br>bolts that are<br>rust resistant     | Completely<br>protected by<br>the silo                                                         | Steel is zinc<br>plated for<br>protection<br>against rust.          |
| Cost                                                | <mark>\$10-15</mark>                                                                            | \$0.77/bolt at<br>Home Depot                                                                  | \$1.94/bolt at<br>Home Depot                            | Home Depot<br>~\$40 for 2 rails<br>+ ~\$3 per foot<br>for steel chain<br>+ ~\$10 for<br>pulley | \$0.87/bolt at<br>Home Depot                                        |



#### Combined Conceptual Design

-PM2.5 laser sensor connected to an Arduino

- Most accurate, designed to connect to an Arduino

-RS485 cable to connect to the HMI system

-Reliable, long range, cheap

-3D printed housing with 4 bolts

-Cheap, easy to install, easy access for maintenance





#### Client Feedback

-HMI connection cable was a bit overkill, only need to run a 4-20 mA current

-Installation process should work as intended

-Environment inside the silo can be very harsh at times, the device has to withstand it

-Have to ensure that the device is foodsafe, can't have pieces breaking off





#### Detailed Design

-3D printed housing, 250x76x60 mm

-Slanted top to reduce impact, removable lid for maintenance

-4 bolts, one on each corner to mount it

-Sensor mounted at the bottom, pointing downwards

-USB-A/B cable attached to the Arduino, adapted to I2C to the HMI system

-Arduino and sensor screwed in, adapter glued in





#### Cost and Equipment

-Planned cost to date: \$275.61

-Required equipment:

-Arduino IDE (programming)

-Fusion360 (designing housing)

-3D printer

-Phillips screwdriver (assembly)

Adjustable wrench (assembly)

Components: -PM2.5 laser sensor -Arduino connector -Connector cable -Superglue -2x 2 mm screws (M2-0.4 x 6 mm) -Arduino Uno Rev3 -Arduino wiring -4.8 m USB-A/B cable  $-4x \frac{1}{8}$  screws (M3-0.5 x 10 mm) -3D printed sensor housing -3D printed sensor lid -4x5 mm screws (M5 x 10 mm) -4x <sup>3</sup>/<sub>8</sub>" bolts (<sup>3</sup>/<sub>8</sub>" x 2") -4x <sup>3</sup>/<sub>8</sub>" nuts -4x <sup>3</sup>/<sub>4</sub>" washers



#### Main Associated Risks

-Sensor doesn't work/doesn't work correctly

-Adapt code or order a different sensor that we identified earlier

-Mounting/casing isn't strong enough

-Redesign or change materials

-Inaccurate measurements online

-Redesign or change to other parts that we identified earlier





#### Prototype I

-Cardboard model of the casing and components

-Used to get a physical model to help us with understanding the design

-Allows us to foresee any potential design problems

-Cheap and easy to construct





#### Results

-Lateral size seems to be appropriate

-Might need to increase the height to fit in the wiring

-Might need to decrease the length at the top to eliminate excess space

-Actual components were inserted at a later date to verify the initial results





#### Prototype II

- -Testing the ability of the sensor to detect dust
- -Load the default sensor code into the Arduino IDE
- -Attach the sensor and Arduino to the laptop
- -Pour grain malt through a funnel into a bag to simulate malt being added to the silo
- -Observe and record if the dust concentrations increase when malt is added





#### Results

-Ordered the wrong type of jumper wires (M-M instead of M-F) due to misleading image on the product site

-Had to manually hold the wires together, which was difficult

-Sensor needed a stable connection for 30 seconds to transmit data, we couldn't do that

-Code functioned and the sensor briefly activated

-Correct wires have been ordered, the test will be repeated with them





#### Future Intermediate Prototypes

-3D printed scaled-down model of the casing and lid to test the fit

-3D printed to-scale connection points (holes) to test the fit and if the screws/bolts will insert properly

-Repeating the test from prototype II with our final code





#### Future Prototype III

-Fully constructed, functional prototype as outlined in the detailed design (with modifications based on previous prototypes)

-Repeat the prototype II test yet again to ensure that the sensor works inside the casing

-Get ordinary people to look at our code output to determine if it's understandable



"Mill Street Brewery needs a system that can measure dust levels in malt silos in order to provide warning of excessive dust conditions that can clog up the filtration system. The system needs to communicate with the existing computer system about dust levels, as well as be accurate and easy to maintain and operate"



#### What's Next?

-Testing the system when connected to the actual HMI system

-Testing the durability and performance of the device in an actual silo environment

-Defining a proper manufacturing process once the design has been finalized





#### What We've Learned

-Things can and will go wrong! But there's nothing wrong with that

- -Learning from mistakes is the best way of learning
- -An open mind is the best solution to problems
- -Collaboration is everything
- -Planning and scheduling works



# Thank You!

### Questions?

