Deliverable D

Conceptual Design

GNG 1103 Design

To: Professor David Knox And Pankaj Kumar Rathi/Chetan Kumbhar

By: Jack Bridgeland Wei Chen Nicolas O'Brien Balpreet Singh Johann Wehrstedt

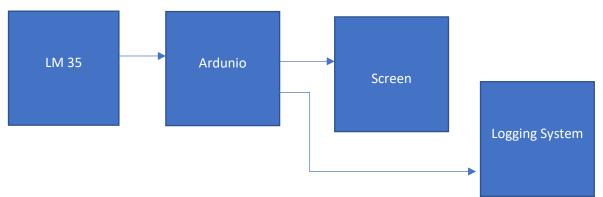
Team: Eternal Hoptimists Submission Date: October 16th, 2022

> University of Ottawa Faculty of Engineering

Table of Contents

ntroduction3
Subsystem Solutions4
Jack's Subsystems Solution4
Nick's Subsystem Solutions6
Balpreet's Subsystems Solution:
Johann's Subsystem Solutions
Wei's Subsystem Solutions
Functional Solutions13
Solution 113
Solution 214
Solution 316
Solution Comparison19
Conclusion20
Nrike Link21
References21

Introduction


In this report, our team took the design criteria we derived from our client meeting with Shane from Beyond the Pale Brewing Company to rank different possible solutions our team was able to put together. We split up our system into 3 smaller subsystems and came up with multiple solutions for these smaller subsystems. From those solutions, we put them together to form an overall possible solution for the system. As previously stated, we used the design criteria to rank 3 overall solutions and chose the best solution according to our design criteria.

Subsystem Solutions

Jack's Subsystems Solution

Table 1: Temperature Sensor LM 35

Design Specifications	Technical Specs	LM 35 Specifications
Cost	\$1,562.00	\$2.60
Range of temperature	0 to 75c	-55 to 150c
Accuracy	+/- 0.5c	+/-0.5c

Table 2: Data Transfer WeMos

Design Specifications	Technical Specifications	WeMos
Cost	\$1,562.00	\$6.66
Memory Transfer	1 GB	4mb

- Allows a connection with Wi-Fi from an Arduino board to a browser on anyone's device that has a connection to the internet
- A SD card with a WeMos D1 mini-SD card shield we can store over 1 GB

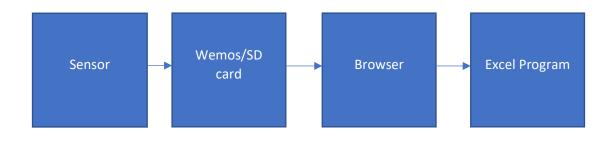
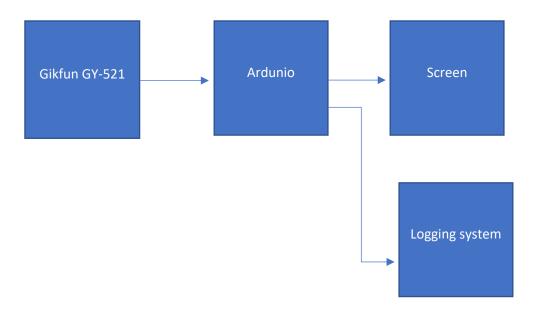



Table 3: Specific Gravity Sensor:

Design Specifications	Technical Specs	Specific Gravity System Specs	
Food Safe		Stainless Steel 304	
Free Floating	No	No	
Sample less	Yes	Yes	

- The Gikfun Gy-521 sensor will measure motion. This will allow us to measure how much the device will sink or float in the product gaining those measurements we are able to calculate the specific gravity.
- The sensor will be placed in plastic bottle that will be secured in a stainless-steel tube that will be threaded together.

Nick's Subsystem Solutions

On I2C Mod. Green Specific Gravity = ? time = ?? temp= 0 Parts Parts -2 LED Arduno - I IR sensor + Remote Ardu:no SD - LCD + IZC Mod. ensor - Arduno Button - Code - Arduino 0 Excell Clock Code Sensors Module SD Card Module - Clock Module To Start logging temperature, a botton will be presped to activate sensor. To start logging process, a remote Connected to an IR sensor will be Sersor will start and Eard data to arduno used to tell to start measuring and Saving data. The green light will shine when the logging process has begun. Red light will shine when process hasn't started. Data will be sent into excell which will save it to SD card to Data can also be seen on the LCD screen which is connected to an IZC module in addition to the time it has already Using the PXL-DAQ Software been in the tank thanks to the clock module. Can use serial plotfer to graph. Drawback: Laptop/computer nust be wired at all times. Drawback: User needs to graph deiter data

Figure 1: Nick's Logging Subsystem Ideas

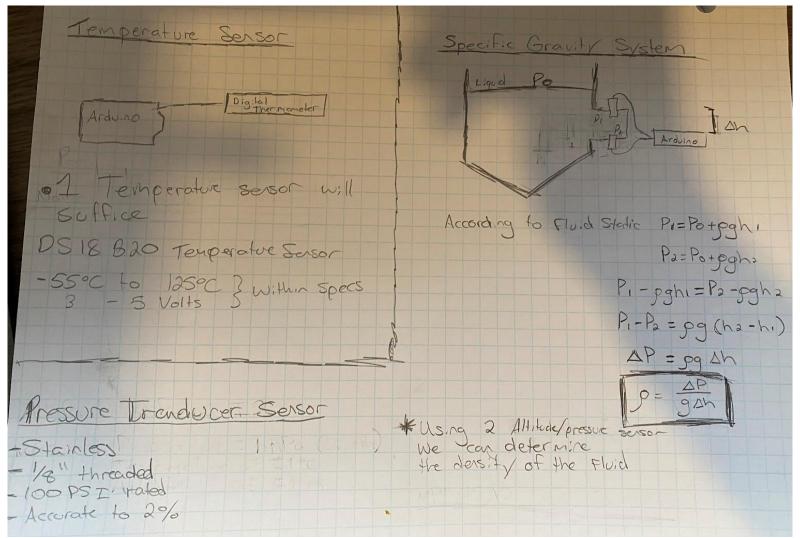
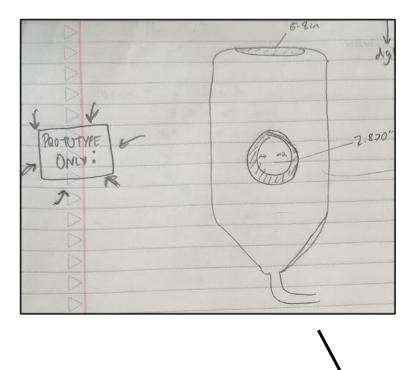



Figure 2: Nick's Temperature and Specific Gravity Subsystem Ideas

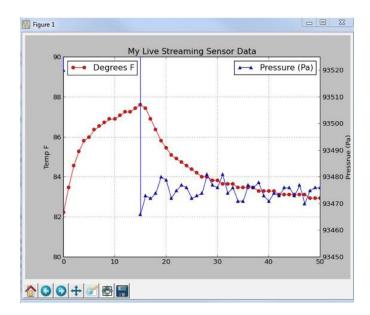
Balpreet's Subsystems Solution:

D	
D	-wired ?
D	· · · · · · · · · · · · · · · · · · ·
D	elean
D	t and mapped
D	
D	stanlig deel framing Malpideb
D	(sanitized) and
D	Serial Monter
D	The mature Sancorig MP 180
D	& Pressure Surson \$10,413 Hard Once white saved of Con
D	& Presure sursor \$10-913 Hard Drive Jurith Python saved of COV

Temperature Measurement:

Robojax BMP180:

Capable of **both** temperature and pressure measurement. (Even though for the sake of prototyping and saving of costs the DS18B20 temperature sensor in-lab could be used for the prototype)


\$13.50

- Resolution: Up to 0.03hPa / 0.25m, Operating voltage: 3 to 5VDC
- Pressure sensing range: 300-1100 hPa (9000m to -500m above sea level)
- -40 to +85°C operational range, +-2°C temperature accuracy This board/chip uses I2C 7-bit address 0x77.
- Module size: 13 mm x 10mm x 2.7mm Watch video get Arduino code: <u>http://bit.ly/2N6DLX6</u>

Getting the same from ebay for **\$1.37** a piece.

Data Logging:

To be captured with the Arduino Uno board and visualized using Python. Would require the **matplotlib**, **pySerial** and **numpy** libraries for Python, to plot both temperature and pressure data against time, like below:

Using Python, there is also the option to write the captured data onto a .csv file for **offline storage** onto a hard-drive or SD card.

Johann's Subsystem Solutions

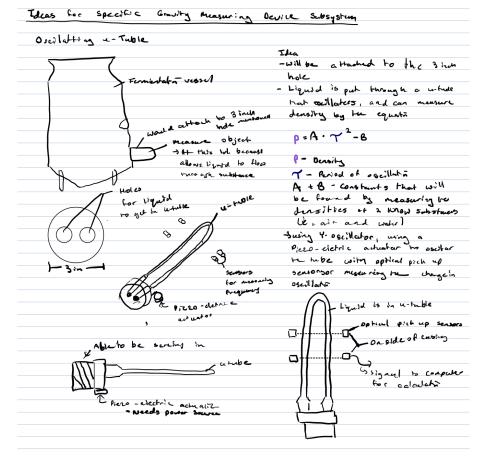


Figure 3: Solution 1 for the Specific Gravity

Estimating specific gravity throng COg levels

- Jue Know Sugar	cause the specific	growty to increase, we also know	
that s. b. decreases	as formentation happe	no over Hare	
- WC Know	more is a reacher	camping hits as seen below	
		ð -	
L12 H22 O	2 6 H13 03) 4 L2H50H + 4 CO2(3)	
mattes c		Ethanol Sicarco alcohol	
> Reaction above is	directly proportial M	L S.G. => so the ansunt of	
LOging generated	Should be porporta	of to the change in s. 6	
	1		
. 74	- amount of wat	to in the vale i	
• 74	amount of su	yar ulded for an find the	
• 7د	e amount of Mathe	se alled S.C	
Delient says they	clease gas from	Hue to the, so it we measure the will use can get a proximation	-
amount of a	Acoducat area the	w we can get a prestmate	2
at 5.6. that call	he faitly close		•
	.7		
\bigcirc	gas flow measured.	solutice I gas rise and escapes +	han
Commenter of the second	gas Find mension	getts mensured electronic	
		by gas flow weter	
(I Turned and)		which sends to a comp	
- which	C Tub C	which cortetes we gas f	
			(DIA)
		to the estimated s.6.	
		> Bucket of water to pres	~
	Proper Bused of	contendents of Beer	
	warv	-> Data contry used to	
		be considered	
	when a can clay much		
The att	when the hours F		
	K - twee armentine		
(in the flow	FL Gus bins		
	_ _		
To to	10 sin deutec + sendi >	levi L	
	The attacking		
Susor -		Mutator's made -> Data sent to couple	/
	- Culculations	for	

Figure 4: Solution 2 for the Specific Gravity

Pressure Difference System	
Formentation vessel	I measures based on the difference
	of pressure of sensors that two
Beer termenting	different hieghts
hund	- The Lower sensor (L) should
	always have a higher preasure
- Data transmitter / Display	than the upper sensor (U)
Fwine	
y.	- Formula given is:
~~~~~	SP= P=P= pgh
	$\rho = \frac{\rho_{\rm c} - \rho_{\rm c}}{2h}$
	<b></b>
on another, and must be	ucrticle to
one arother, and must be	in areas the g-allelarates of gravity
h are subscored in termenting	liquid to p-Acosure
n	- difference of night in
	programe sensors
L → U needy to be at a pain	
it will always be submerged	~
A way in the believer it	sions at firmulation of How much
75 110 Lilled tanks	ions at finitely of How much
+ 3 4 + C + C + C + C + C + C + C + C + C +	
Juta transmition - An a	additional display
I alle yessel	shen BT is not S- sensor
and the All BM	CMIPH BM - Blue boom noduce
- sunt to	CMIPH - computer ( those
is what hards in it	-> wire (hard Wred)
of Hour, et c.) of specific gowing	D - Display
1	
Andiano Bourd - Ardriano Un	ره <u>۲</u>
_	
Possable 0:5 plug systems	
	Number display
touch	
Seren	000
II	
	Buttons for setting
	change of draphaying
Temperature senses	other data
pro roof produces bound	
act where a mainting that	
Au	
- Au	
0.00	
RTD senser - is the most accurate to	ype

Figure 5: Solution 3 for the Specific Gravity and solution for

# Wei's Subsystem Solutions

# **Functional Solutions**

Solution 1

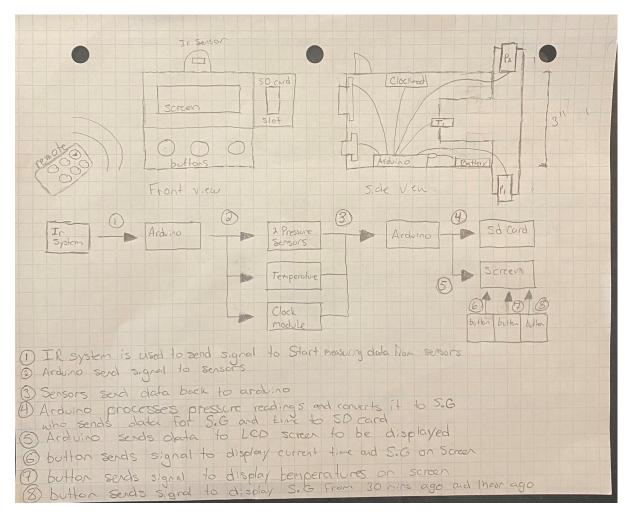



Figure 6: Overall Solution number 1

#### Table 4: Solution 1 Parts

Parts	Specs
x1 Arduino	20\$ (Elegoo Board owned)
x1 IR sensor + Remote	8 meters Transmission
	28 kHz Transmission
	• 3.3 or 5 volts
x1 DS18B20 Temperature Sensor	<ul> <li>-55 to 125 °C</li> </ul>
	Stainless Steel Probe
x2 Pressure Transducer Sensor	Rated for 300 Psi
	Stainless Steel
	• 1/8" threading
	• 0.04 kg
	• Good for -40 - 120°C
x1 Geekstory SD card module	2GB Storage
	• 3\$ / piece
x1 LCD Screen + I2c Module	• 20 x 4 Characters
	• 15\$
x1 Clock Module	• 5.40 \$ / piece
x1 Battery	• N/a
x3 Buttons (uxcell a12081400ux)	• 1.62\$ / piece

#### Solution 2

The idea of this design is that we measure (estimate) the specific gravity based on how much carob dioxide gas is created during the fermentation process, as the amount of carbon dioxide created is directly proportional to the amount of alcohol made. This process does require inputting known data (such as liquid added, and the amount of sugar in the liquid).

The water bucket is that no contaminates are introduced in the beer. We also know that many of them already release pressure, so it would useful to use the possible tubing they already have to both release the gasses and measure specific gravity.

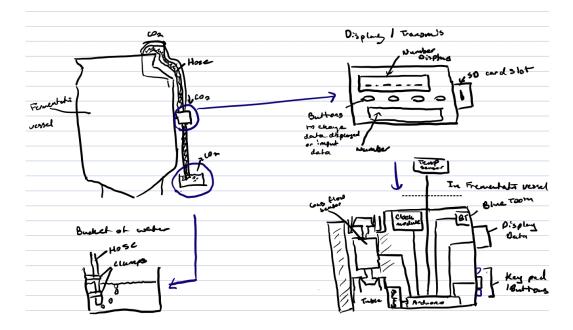
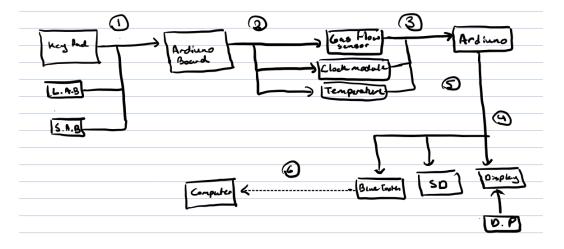
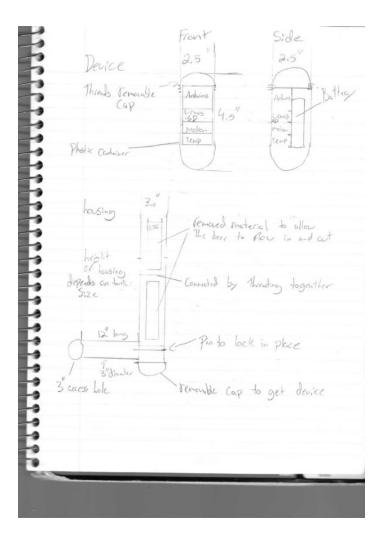
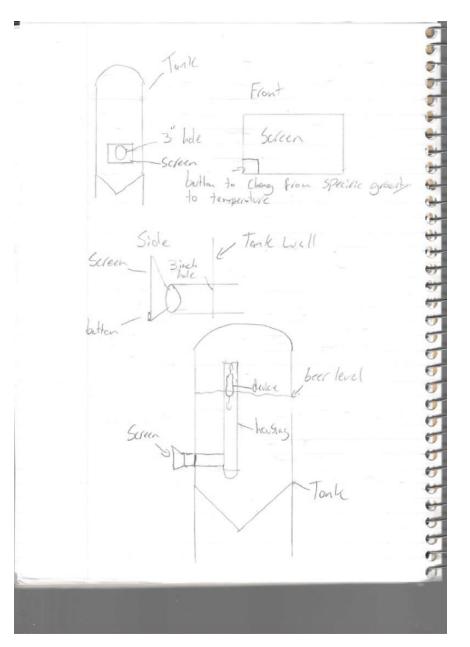



Figure 6: Overall Device design



Figure 7: Login System design

- 1. Data is entered into system through pressing LAB (Liquid Amount button) and SAB (Amount of sugar/wheat) and entering the data in to through the keypad.
- 2. This starts the Arduino board to tell the sensors to start running.
- 3. Sensors sends data to Arduino board that then calculates the SG using inputted data
- 4. Arduino sends the SG and temperature data to the display where it can be seen by pressing a button

5+6. Data of SG over time is sent to blue tooth module which sends it to the computer for analyzation and the SD card, extra case blue tooth goes down so data is stored safely

# Solution 3





- The accuracy of this solution is unknow and will need to be tested.
- The device will be fitted with a SD card that can hold up to 1gb of data or the user can upgrade and add an SD card that can hold the desired number of bytes. The device will be able to transmit current readings with WIFI to a web browser which will be uploaded to an excel sheet for graphing and logging of data.
- The housing of the device will be made of 3" 40 high temp CPVC piping. That is food friendly. It is also lightweight and cost effective. The device will be in a bottle made from Acrylic (PMMA) because of its light weight and non-toxic properties.
- The housing's largest diameter will be 3" to allow it to be attached to the access point. The hosing will be broken up into 24" long pieces that can be threaded together inside the tank.
- The bottle that the device is placed inside the housing restricting the movement of the device to be only vertically. Not allowing the device to float around the tank freely

- An LCD screen will be placed on the outside of the tank that will show the current results of the device
- A 12" shaft will be made so the device can fit closer to the center to get the most accurate readings
- The temperature sensor LM 35 can work within the range of 0 to 75 degrees Celsius as it is rated for -55 to 150 degrees Celsius.
- The LM 35 is accurate to +/- 0.05 degrees Celsius this the desired accuracy of the temperature results
- To clean the device and the housing, it will be removed from the tank and be placed in the food friendly cleaning solution that is already being used by the client.
- To install the device the 12" support will be placed inside the tank. The housing will be inserted and threaded together by the 13.5 to 17.5 access hole. The support and housing will be clamped and secured together with a pin to prevent the hosing from falling. The devices will be placed in a cap at the bottom of the housing that will be threaded on. To remove follow process in reverse.

Cost of parts

Part	Cost (CAD)	
LM 35	\$2.6	
WeMos D1 Mini	\$6.66	
Gikfun Gy-521 6 Axis Accelerometer	\$5.00	
Gyroscope		
WeMos D1 SD shield	\$20.00	
Arduino Board	\$50.00	
1 Gb SD Card	\$10.00	
LCD Screen 1.8 inch	\$12.00	
Battery	\$5.00	
3" 40 Hi- Temp CPVC Pipe (85")	\$147.00	
Device Case	\$5.00	
Total	\$263.26	

All costs are estimates and prices can vary.

# Solution Comparison

Design Specs	Technical Specs	Functional Solution 1	Functional Solution 2	Functional Solution 3
Measuring	+/- 0.002	+/0.5%	Unknown	Unknow
Specific			(must be	(must be
Gravity			tested)	tested)
Run for 14 to	21-28	To be tested	Unknown	Unknow
21 Days			Must be	(must be
			tested	tested)
Send and Log	1 Gb	2 GB SD card	1 GB SD	1Gb
Data			card;	
Food Safe	Yes	Stainless	Yes; Not it is	Yes
Material		Steel Probes	not in	
			contact with	
			product	
Device	13.5 by 17.5	Can be	N/A	3" diameter
Dimensions		modifiable		
Not Free	Yes	Yes	Yes	Yes
float				
Out puts	Yes	Yes, by	No, outside	Yes, by a
results		screen	the inter	screen
through 3"			tank	
hole				
Location in	1' away from	Clamps on to	Outside the	1' away from
the Tank	edge	3" Hole	tank	edge
Exposed to	up to 75c	Up to 120 C	Wouldn't be	-55 to 155c
high			exposed to	
temperature			that high of	
S			temperature	
			S	
Cost	\$1,562.00	N/a	N/A	\$263.26
Temperature	+/- 0.05c	+/- 0.5 °C	+/- 0.05°C	+/- 0.05c
accuracy				
Screen	Yes	Yes	Yes	Yes
Power is	Yes	No, Battery	No, battery	No
hard wired		powered	powered	
Easy to clean	Yes	Yes	Yes	Yes

Easy to use	Yes	Yes	No (need to input already measured data)	Yes
Weight	6.8 kg	Can be modifiable	N/A	Unknow (must be tested)
Easy to remove and install	Yes	Yes	Yes	No
Sample less	Yes	Yes	Yes	Yes
Easy to test prototype	Yes	Yes	No,	Yes

# Conclusion

In conclusion, after analyzing 3 possible solutions in accordance with the design criteria outlined in Deliverable C: Design Criteria, we were able to determine that solution number 1 is the ideal solution to tackle Beyond the Pale's design problem because it satisfies more of the design criteria than the other 2 solutions. Solution number 1 has only one drawback, that it is battery powered rather than hardwired. While solution number 2 and 3 have several drawbacks that are not ideal. Some examples of the drawbacks are solution number 3 is not easy to remove or install. Solution number 2 is harder to use as the user must input more data before the device can work. This leaves a greater chance for user error resulting in miss calculations. The last drawback for solution number 2 is that it will be harder to make a prototype to test the accuracy of measuring specific gravity because of the lack of time and money. Therefore, solution number 1 best fits the design criteria made for this problem because it is easy to remove/ install, it is user friendly, and we can easily manufacture a prototype to test the device.

# Wrike Link

https://www.wrike.com/open.htm?id=966341779

### References

- [1] [Online]. Available: https://www.amazon.com/Bridgold-Analogue-Precision-Centigrade-Temperature/dp/B07Y7FCZYB/ref=sr_1_2?keywords=Im35&qid=1665842817&qu=eyJxc2MiOiIzLj Y4liwicXNhIjoiMi44NSIsInFzcCl6IjluNDkifQ%3D%3D&sr=8-2.
- [2] [Online]. Available: https://www.amazon.ca/CANADUINO-WEMOS-ESP8266-Wi-Fi-Module/dp/B07WWFND3B/ref=sr_1_6?gclid=CjwKCAjwkaSaBhA4EiwALBgQaO45MUmwPIKDHM vJGpDi4P5yoATnDJo5UUATgGgNFbIBcpuhYmxeqxoCuc0QAvD_BwE&hvadid=604663969907&hv dev=c&hvlocphy=9000673&hvnetw=g&hvqmt=e&hvrand=1354.
- [3] https://forum.hobbycomponents.com/viewtopic.php?t=2129. [Online].
- [4] [Online]. Available: https://www.amazon.ca/AlphX-Innovations-1gb-Cardpack/dp/B0842YS4CP/ref=sr_1_5?gclid=CjwKCAjwtKmaBhBMEiwAyINuwDoa5rdkBgmxR58R9H-TbvaVI9GrAkW8YCbceeBIIXENn6d3tKLaZxoCsF0QAvD_BwE&hvadid=604601271763&hvdev=c&h vlocphy=9000673&hvnetw=g&hvqmt=e&hvrand=286586391.
- [5] [Online]. Available: https://www.amazon.ca/Gikfun-MPU-6050-Accelerometer-Gyroscope-EK1091x3C/dp/B07JPK26X2/ref=sr_1_1_sspa?gclid=CjwKCAjwqJSaBhBUEiwAg5W9p_D_gIHeBaG CO2vEV4l1InowJt4jnzSY9A8jnvsb-nQ_Z77dGuhFFxoCI-8QAvD_BwE&hvadid=596268005192&hvdev=c&hvlocphy=9000671&hvnetw=g&h.
- [6] [Online]. Available: https://www.amazon.ca/Robojax-Digital-Barometric-Pressure-Temperature/dp/B08FBJVHX1/ref=sr_1_5?keywords=BMP180&qid=1665850709&qu=eyJxc2MiO ilyLjc2liwicXNhljoiMi4zMClsInFzcCl6ljluMjEifQ%3D%3D&sr=8-5.
- [7] [Online]. Available: https://www.ebay.ca/itm/201414876396.
- [8] [Online]. Available: https://toptechboy.com/python-with-arduino-lesson-11-plotting-and-graphing-live-data-from-arduino-with-matplotlib/.
- [9] [Online]. Available: https://www.instructables.com/Sending-Data-From-Arduino-to-Python-Via-USB/.

[10] [Online]. Available: https://www.amazon.ca/Gikfun-MPU-6050-Accelerometer-Gyroscope-EK1091x3C/dp/B07JPK26X2/ref=sr_1_1_sspa?gclid=CjwKCAjwqJSaBhBUEiwAg5W9p_D_gIHeBaG CO2vEV4l1InowJt4jnzSY9A8jnvsb-nQ_Z77dGuhFFxoCl-.