

A 2.3 One-Handed Walker Steering

By: Defne, Ekin, Jérémie, Jorge, and Saheel

Client Meet 1

- 1. What do you think the current walker lacks to accommodate people with limited mobility in the arms?
- 2. What type of walker should the device be compatible with?
- 3. For what person is the product intended?
- 4. Do you have an email we can contact you with?
- 5. Do you expect the user to be able to install the device themselves or need help?
- 6. Do you have a preference between an electronic (batteries) or a mechanical device?
- 7. What has led you to want to fix this problem?
- 8. Has there been a lot of requests for a product like this?
- 9. Do you have a preference for the materials that the frame will be made with?
- 10. Where do you usually use your walker?
- 11. Are aesthetics a high priority?
- 12. How do you currently steer your walker (if dislocated)?

Problem analysis

• Client Statements

- I want the device to be long-lasting, be permanent
- 2. I want to be able to walk over snow banks
- 3. I want the device to be detachable and versatile
- I want the device to be stable,
 balance is key
- 5. I want the device to be able to fold on itself...



• Translated customer needs

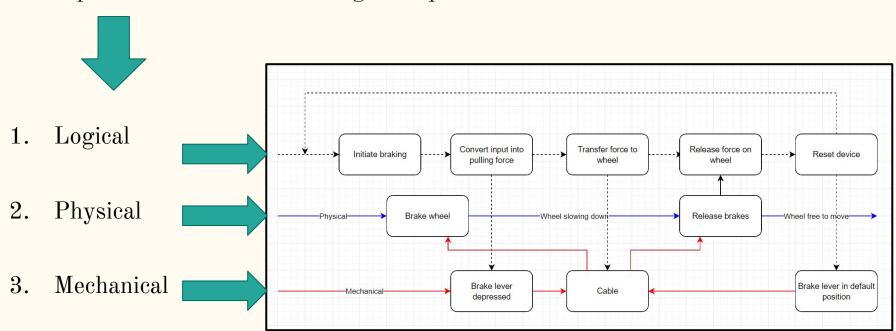
#	Need	Imp
1	The device lasts a long time	4
2	The device can endure extreme weather conditions (snow, rain, cold and heat)	3
3	The brackets can be on installed easily on any walker	5
4	The fasteners fit tight	4
5	The device allows an easy installation without making permanent changes to the walker	3

Metrics

Needs List

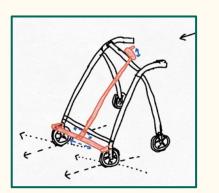
Metric #	Needs #	Metric	Unit
1	9	Force required to use device	N
2	9	Manoeuvrability (Turning Radius)	m
3	9	Agility (Rotational speed)	deg/s
4	8	Total weight	kg
5	7	Dimension	m^3
6	2,7,1	Reliability (MTBF)	h
7	1,8	Material	N/A
8	3,5	Detachability (Time to assemble)	min
9	4,9,10	Ease of use	N/A
10	6	Cost	CAD

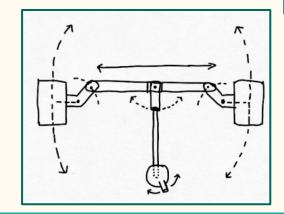
Benchmarking

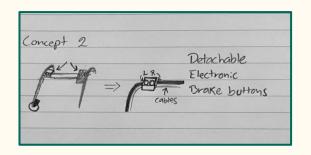

Specification	Importance (Weight)	Nitro Euro Style Walker Rollator.	Electric Wheelchair	Manual Wheelchair
Make		Drive Medical	Fold and Travel	Medline
Cost (CAD)	5	400	2900	287
Load Limit (N)	3	1300	1470	1332.8
Material	2	Aluminium	Aluminium	Aluminium
Dimension (cm)	3	70.5 x 58.4 x 92.2 centimetres	72.2 x 62.5 x 95.5 centimetres	80 x 64.8 x 92.7 centimetres
Ease of Installation	4	3	2	2
Force required (N)	5	10	1	130
Manoeuvrability	4	3	2	1
Agility	3	1	3	2
Reliability	4	3	1	2
Total		83	60	67

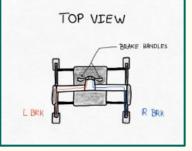
Benchmarking done for components and devices with similar purpose (steering)

Functional decomposition

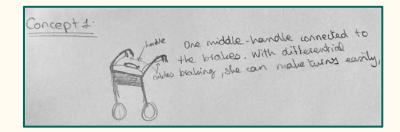

Decomposition of all needs into logical separable Tasks




Ideation



15 Ideas / Sketches



Target Specifications

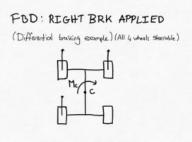
Metric #	Functional Requirements	Relation	Value	Unit	Verification Method
1	Force required to use device	<	10	N	Test
2	Manoeuvrability (Turning Radius)	<	2	m	Test
3	Agility (Rotational speed)	>	30	deg.s ⁻¹	Test
#	Non-Functional Requirements	Relation	Value		
4	Total weight	<	8.5	kg	Test
5	Dimension	<	0.55	m³	Test
6	Reliability (MTBF)	>	2500	h	Estimate
7	Material	-	Aluminium	N/A	Analysis
8	Detachability (Time to assemble)	<	20	min	Test
9	Ease of use	-	-	N/A	Test
#	Constraints	Relation	Value	Unit	
10	Cost	<	100	CAD	Given
11	Time to complete project	<	1/12/2022	Date	Given

Decision Matrix

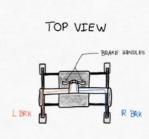
Concept Options (Part 1 of 3)											
Selection criteria	Weight	_	Defne Concept 1		Defne Concept 2		Defne Concept 3		Jérémie Concept 1		émie cept 2
Force required	0.15	5	0.75	9	1.35	8	1.2	5	0.75	10	1.5
Maneuverability	0.13	5	0.65	7	0.91	8	1.04	4	0.52	8	1.04
Cost	0.13	5	0.65	6	0.78	6	0.78	5	0.65	1	0.13
Total weight	0.15	5	0.75	4	0.6	5	0.60	5	0.75	4	0.60
Dimension	0.11	5	0.55	3	0.33	6	0.66	7	0.77	7	0.77
Reliability	0.11	5	0.55	5	0.55	6	0.66	7	0.77	3	0.33
Material	0.07	5	0.35	4	0.35	5	0.35	5	0.35	3	0.21
Ease of installation	0.15	5	0.75	6	0.9	5	0.75	4	0.6	3	0.21
Total Score			ef. = 5	5.77		6.04		5.16		4.79	

Concept Options (Part 2 of 3)											
Selection criteria	Weight		Jérémie Concept 3		Jorge Concept 1		Jorge Concept 2		Jorge Concept 3		aheel acept 1
Force required	0.15	10	1.5	4	0.6	10	1.5	5	0.75	10	1.5
Maneuverability	0.13	8	1.04	5	0.65	7	0.91	7	0.91	8	1.04
Cost	0.13	1	0.13	7	0.91	2	0.26	5	0.65	4	0.52
Total weight	0.15	3	0.45	5	0.75	3	0.45	4	0.60	5	0.75
Dimension	0.11	4	0.44	5	0.55	1	0.11	4	0.44	5	0.55
Reliability	0.11	1	0.11	6	0.66	1	0.11	6	0.66	4	0.44
Material	0.07	1	0.07	1	0.07	2	0.14	3	0.21	5	0.35
Ease of installation	0.15	1	0.15	3	0.45	1	0.15	3	0.45	2	0.3
Total Score		3.89		4.64		3.63		4.67		5.45	

Concept Options (Part 3 of 3)											
Selection criteria	Weight	2792	heel cept 2		heel cept 3		p Ekin acept 1		p Ekin ncept 2		p Ekin acept 3
Force required	0.15	10	1.15	4	0.6	4	0.6	5	0.75	10	1.50
Maneuverability	0.13	7	0.91	6	0.78	6	0.78	3	0.39	6	0.78
Cost	0.13	8	1.04	1	0.13	5	0.65	5	0.65	1	0.13
Total weight	0.15	7	1.05	2	0.3	7	1.05	2	0.30	1	0.15
Dimension	0.11	7	0.77	2	0.22	7	0.77	5	0.55	3	0.33
Reliability	0.11	8	0.88	4	0.44	2	0.22	5	0.55	4	0.44
Material	0.07	6	0.42	3	0.21	5	0.35	5	0.35	5	0.35
Ease of installation	0.15	9	1.35	1	0.15	5	0.75	1	0.15	2	0.30
			7.57		.83	5.17		3.69		3.98	


Client Meet 2

- Ask for input
- Ask for any updates on the requirements
- Discuss all possible ideas

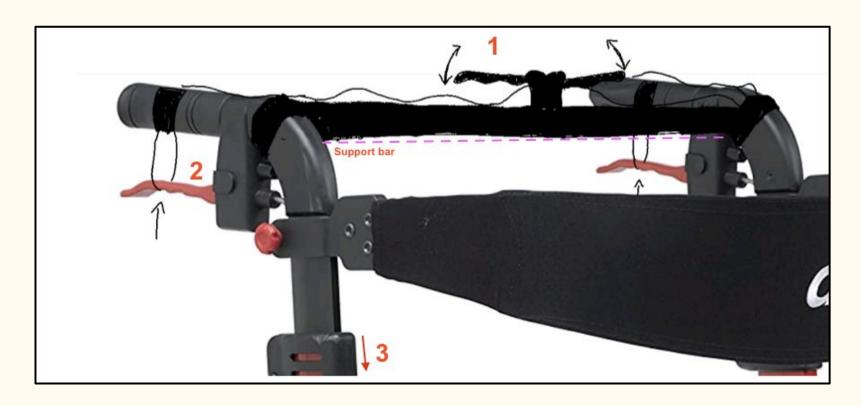

Final Decision

CONCEPT 2: CABLE DIFFERENTIAL BRAKING

Positives

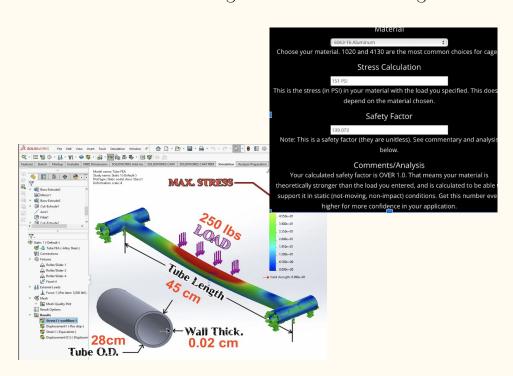
VS

Negatives


- Low price point
- Ease of installation
- Reliability
- Ease of Use

- Complexity
- Maneuverability

First Prototype -> Low fidelity



Testing -> (focused & analytical)

1. Brake displacement testing

2. Cross Bar Weight Distribution Testing

Bill of materials

Bill of Materials										
Material required	Amount	Cost (shipping included)	Link							
Brake wire with black tubing	10 pcs	\$12.29	https://amzn.to/3MfO 362							
Aluminum Brake handle	2 pcs	\$15.99	https://amzn.to/3CKc w0n							
Aluminum tube 28x26x500 mm 6063-T6	1 pc	\$32.49	https://amzn.to/3fUZ OTu							
Sail tie Optiparts	1 pack	\$19.35	https://bit.ly/3T5VCh R							
Scotch-Mount ½" x 15"	1 pack	\$15.50	https://amzn.to/3fSzG IW							
	Total Cost =	\$95.62								

- <u>Preliminary</u>
- Under \$100 dollars
- Shipping included
- Additional material considered*

A2.3

#≡ List

▼ All tasks
 By Due date

> PD I: User manual

Item

21/11/2022

11/12/2022 29FS

⊞ Table 월 Gantt Chart ···

Expand all Collapse all 🖸 📑 🐿 👆 💸

8 Name Dec 2022 Start date Due date 1 Predecessors 11-17 18_24 23-29 30-5 27-3 4-10 25-31 16-22 18-24 **≜** A2.3 A2.3 Months v - + -PD A: Team Contract, Client Meeting Preparation and Project Management Skeleton • Jorge Jimenez A. > PD A: Team Contract, ... 11/09/2022 18/09/2022 Client Meet 1 20/09/2022 2FF Client Meet 1 • Ekin B. 25/09/2022 2FS > PD B: Needs 19/09/2022 -PD B: Needs • Jérémie L. 26/09/2022 02/10/2022 8FS -PD C: Conceptual Design and Project Plan • Saheel N. > PD C: Conceptual De... Client meet 2 04/10/2022 11FF Client meet 2 • Defne O. PD D: Detailed design • Jérémie L. > PD D: Detailed design 03/10/2022 09/10/2022 11FS > PD E: Project progres... 14/10/2022 21/10/2022 16FS PD E: Project progress presentation • Defne O. → Client Meet 3 • Saheel N. Client Meet 3 01/11/2022 21FF -PD F: Prototype 2 • Ekin B. > PD F: Prototype 2 29/10/2022 06/11/2022 21FS -PD G: Business model and economics report • Saheel N. > PD G: Business model... 07/11/2022 20/11/2022 25FS > PD H: Design day 21/11/2022 28/11/2022 29FS PD H: Design day • Defne O. PD J: Final presentation 30/11/2022 07/12/2022 29FS PD J: Final presentation • Ekin B.

Share

→ ...

... [0]

PD I: User manual • Jorge Jimen

Snapshots

Our 3 Next Steps

1. Finalize the fasteners' designs

2. Explore options for power to

displacement conversion

B. Physical Prototype

Prototype 2

• Physical

• Medium Fidelity

• Reuse Materials For Final product

Client Meet 3 - Questions

- 1. Are you able to use a bicycle brake?
- 2. How often do you use the seat on your walker?
- 3. Do you have a favorite color for us to use for the casing?
- 4. Would you like to have one handle in the middle of the support bar, or would you rather have one on each side of the mechanism?
- 5. How do you usually lean onto your walker?

What we will improve on for Client Meet 3

- Share screen with the new prototype
- Rehearse our presentation
- Be ready for questions
- Bring visual support
- Record the meeting (with consent)

Thank you