
Deliverable H - Prototype III and Customer Feedback

GNG 1103
Introduction to Engineering Design

To:
Professor David Knox

By: Group 03 - AllTheyDoIsWin
Alec Plourde

Ashley Garofalo
Gabrielle Graceffa

Thomas Johnson Band
Emmett van den Broek

Due Date: November 27th, 2022
Submission Date: November 25th, 2022

University of Ottawa
Faculty of Engineering

GNG1103 - Deliverable H - Prototype III

Table of Content

1.0 - Prototyping Test Plan - Part 3 2

2.0 - Errors and Challenges 10

3.0 - Final Code 12

Wrike Link: https://www.wrike.com/open.htm?id=969517657

1

https://www.wrike.com/open.htm?id=969517657

GNG1103 - Deliverable H - Prototype III

1.0 - Prototyping Test Plan - Part 3

Test ID #3: Testing the volumetric flow sensor

Goal: The goal of this test was to ensure that the volumetric flow sensor could read the flow
value of water in ml/s and display the results in the serial monitor.

Process: The sensor was wired to the Arduino breadboard and the test was performed using a
kitchen sink to create the water flow (see Figure 1.1)

Code used: The practice code used to ensure the volumetric flow sensor would run can be seen
below:

Results: The sensor was able to read the value of water flowing through it while simultaneously
printing it onto the serial monitor (see Figure 1.2)

Volumetric flow sensor code:
//attachInterrupt(interrupt number, the function you would like to run

when triggered, what you would like to set as trigger) this is how you can

interpret this function

// I am using interrupt 0 to trigger "Flow" function when a pin changes

low ot high = pulse arrives from sensor

int PinFlow = 2; // This is the flow meter input pin on the arduino

double VolFlow; // this is the volumetric flow we want to find

volatile int sum; // intger is set as volatile for correct updates during

interrupt = important as it will store #of pulses each second

void setup() {

pinMode(PinFlow, INPUT); // sets the Flow pin from arduino as an input,

pin needs to be set as an input before it can interrupt

attachInterrupt(0, Flow, RISING); // makes the interrupt 0 (pin #2 on

arduino mega) to run the function "Flow" so the increment function

Serial.begin(9600);

}

2

GNG1103 - Deliverable H - Prototype III

void loop() {

sum = 0; // resets the counter so we start counting from 0 again since

loops runs over and over again

interrupts(); // allows interups on the arduino to run, so start

counting # of pules from sensor

delay(1000); // delay reading for 1 second

noInterrupts(); // Disable the interrupts on the arduino so stop

counting pulses

// Now we must do the math to find the volumetric flow since we know

approx 2.25mL fluid/pulse (everytine it rotates)

VolFlow = (sum*2.25); // #pulse in a second by the amount of 2.25mL of

fluid

VolFlow = VolFlow / 1000; // convert to L/s

VolFlow = VolFlow / 1000; //convert L/s to m^3/s

Serial.println(VolFlow);

}

void Flow() { // new function created that the interrupt will run every

time a pulse is found

sum++; // everytime this function is called an increment, ++ will ad 1

to that variable everytime the program runs

}

3

GNG1103 - Deliverable H - Prototype III

Figure 1.1 - Flow Meter Testing Layout

Figure 1.2 - Flow meter reading results during testing in m^3/s

4

GNG1103 - Deliverable H - Prototype III

Test ID #8: Finishing the 3D printing

Goal: The goal of this test was to build the 3D model to begin the testing phase of the design

Process: The printing process was completed in the maker space on November 16th. The
assembly process for testing was done on November 19th.

Results: The 3D printing process was successfully completed with the same blockage being
present in the pressure tap designs (see figure 2.1). A few errors were present during the
building phase which will be explained in the errors section. The built for parts 2,3, and the
orifice plate can be seen in figure 2.2

Figure 2.1 - New print for part 2 with the same pressure tap blockage

5

GNG1103 - Deliverable H - Prototype III

Figure 2.2 - 3D print assembly for parts 2,3 and the orifice plate

6

GNG1103 - Deliverable H - Prototype III

Test ID #9,10,11: Final build and testing of design

Goal: The goal of this test was to finish the building process while ensuring the physical device
can be properly wired and connected.

Process: The finishing touches to the design building process were completed on November
19th. The testing phase of the specific gravity measurement occurred on the same day and the
testing occurred using a garden hose to simulate the water in-line system (see figure 3.1).

Results: The design was able to successfully read an SG value of the water. However, due to
multiple errors that occurred, the value was approximately 0.68 before starting to fluctuate
frequently in ranges that did not make theoretical sense. This SG value reading should have
theoretically been 1 as the fluid used for testing was the reference fluid in the specific gravity
equation. The average error percentage observed was approximately:
%𝑒𝑟𝑟𝑜𝑟 = 0.68−1

1
|| || * 100 = 32%

The results were printed into the Serial Monitor and can be seen below in figure 3.2

Figure 3.1: Final Testing Layout

7

GNG1103 - Deliverable H - Prototype III

Figure 3.2 - Results on Serial Monitor for SG values

8

GNG1103 - Deliverable H - Prototype III

2.0 - Errors and Challenges

During the testing and building phase, there were, unfortunately, multiple errors that
arose, leading to inaccuracy in the results. The first error was during the assembly process of all
3D parts. For parts 2 and 3, careful and precise drilling was required to open up the
blockage/supports created during the 3D printed process in the pressure taps. However, during
the drilling process, one of the pressure taps cracked, causing a major hole in the physical
device (see figure 4.1). This hole was a major concern and disappointment due to the high
chance of the taps no longer being waterproof/air sealed tight. In an attempt to fix this mistake,
waterproof tape and epoxy resin was heavily added to all areas of the crack to try & create a
sustainable seal. The next error occurred during the attempted seal of the orifice plate and the 2
plated areas for parts 2 and 3. All 3 rectangular sections were screwed together tightly with the
premade slots. In addition to this, epoxy resin was generously added to all surfaces and cracks.
Upon testing of the entire assembly, it was seen that both solutions did not sustain in keeping
proper air and water seal. The crack area was ejecting large amounts of water while the 3 plates
were slightly letting water pass (see figure 4.2). This lack of seal obviously created multiple
errors in our specific gravity measurement. Finally, another error that occurred is the accuracy of
the volumetric flow meter sensor. As seen in figure 3.2, the flow meter reads a value of 0 during
the trial process. This was an error from the sensor itself as the other values depend on the flow
volume, thus meaning that the flow meter was reading a value, sending it to equations but not
saving/displaying it. This error questions the accuracy of the cheap volumetric flow meter and
leads to inaccurate results when calculating the specific gravity.

Figure 4.1 - Cracking in the pressure tap during drilling

9

GNG1103 - Deliverable H - Prototype III

Figure 4.2 - Water leakage when testing

10

GNG1103 - Deliverable H - Prototype III

3.0 - Final Code

#include <LiquidCrystal.h> // include library for the LCD Screen

//Variables for the Differential Pressure Sensor

const float ADCtomV = 4.8828125; // Conversion multipler needed from

Arduino ADC value at pin to voltage in mV

const float SensorOff = 200; // units in mV taken from data sheet for

MX5050DP

const float sensitiv = 90; // units in mV/Kpa taken from datasheet

float diffpressure; // The value in Kpa of the differential pressure that

we need

int PIN_P1 = A0; // If the diff pressure sensor is plugged into analog pin

A0

//Variables for the Volumetric Flow Meter

int PinFlow = 2; // This is the flow meter input digital pin 2 on the

arduino

double VolFlow; // this is the volumetric flow we want to find

volatile int sum; // intger is set as volatile for correct updates during

interrupt = important as it will store #of pulses each second

//Variables for LED lights

int redledpin = 24; // define where red led pin is placed 24 digital pin

on arduino

int greenledpin = 25; // define where green led pin is placed 25 digital

pin on arduino

//Variables for the LCD screen

const int rs=1, en=8, D4 = 4, D5=5, D6=6, D7=7; //rs = rs pin on LCD, en

= enable pin on LCD, D4 = register pin D4, same for D5-D7

LiquidCrystal lcd(rs,en,D4,D5,D6,D7); //Initialize the library by

associatting LCD interface pin with arduino pin number it is conected to

//Plato Calculations Variables

const float CD = 0.6; // coefficient of discharge for orifice plate finish

(for flat edge is typically 0.6)

const float Beta = 0.33333333333; // ratio between orifce diameter and

inside pipe diamter = 1/3 so 0.333333

11

GNG1103 - Deliverable H - Prototype III

const float Do = 0.00635; // orifice diameter in meters

const float pi = 3.141592654; // pi constant

const float rowWater = 1000; // constant for row of water

float row; // density of fluid constant

float SG; // density of specific gravity constant

float PlatoVal; // define Plato Value, in float so it can display

Decimals

void setup() {

lcd.begin(16,2); // setup LCD screen dimensions (16 x2)

lcd.print("This is Good");

pinMode(PinFlow, INPUT); // sets the Flow pin from arduino as an input,

pin needs to be set as an input before it can interrupt

attachInterrupt(0, Flow, RISING); // makes the interrupt 0 (pin #2 on

arduino mega) to run the function "Flow" so the increment function

pinMode(redledpin, OUTPUT); // setup red and LED as output on arduino

pinMode(greenledpin, OUTPUT); // setup green LED pin as output on

arduino

Serial.begin(9600); // start serial communication

}

void loop() {

//Pressure in Kpa Calculation

diffpressure = ((analogRead(PIN_P1) * ADCtomV - SensorOff) / sensitiv) *

1000; // result will be in Kpa since [mv * Kpa/mV] = Kpa so we then

multiply by 1000 to get Pa

//Volumetric flow in m^3/s Calculations

sum = 0; // resets the counter so we start counting from 0 again since

loops runs over and over again

interrupts(); // allows interups on the arduino to run, so start

counting # of pules from sensor

delay(1000);

12

GNG1103 - Deliverable H - Prototype III

noInterrupts(); // Disable the interrupts on the arduino so stop

counting pulses

// Now we must do the math to find the volumetric flow since we know

approx 2.25mL fluid/pulse (everytine it rotates)

VolFlow = (sum*2.25); // #pulse in a second by the amount of 2.25mL of

fluid

VolFlow = VolFlow / 1000; // convert to L/s

VolFlow = VolFlow / 1000; //convert L/s to m^3/s

//Math to find Plato Value

row = (diffpressure *

(CD*CD)*(Do*Do*Do*Do)*(pi*pi))/(8*(VolFlow*VolFlow)*(1-(Beta*Beta*Beta*Bet

a))); // equation when soving for density

SG = row/rowWater; // finding SG value

PlatoVal = (-1*616.868) + (1111.14* SG) - (630.272 * (SG*SG)) + (135.997

* SG * SG * SG); // equation found converting SG to Plato

//LCD code to print resulting Plato Value to Screen

lcd.clear();

lcd.setCursor(0, 0); // set the cursor to column 0, line 0 which means

1st row, 1st column

lcd.print("Plato: ");

lcd.print(PlatoVal);

lcd.setCursor(0, 1); // set cursor to print SG value 2nd row, column 0

lcd.print("SG: ");

lcd.print(SG);

delay(500);

Serial.println(diffpressure);

Serial.println(VolFlow);

Serial.println(row);

Serial.println(SG);

Serial.println(PlatoVal);

// Code for LED lights depending on PlatoVal

if(PlatoVal >0 && PlatoVal <30) { // if the plato value is between 0 and

30 then show green light as it is good

digitalWrite(redledpin, LOW); // digital write (LOW) = turn Red led off

13

GNG1103 - Deliverable H - Prototype III

digitalWrite(greenledpin, HIGH); // digitalWire (HIGH) = turns green

LEd on and shows plato range is good

}

else if(PlatoVal <0 || PlatoVal > 30){ // if plato value is less then 0

or larger then 30 , show that plato value is bad with red light

digitalWrite(redledpin, HIGH); // red light is turned on

digitalWrite(greenledpin, LOW); // green light is turned off

}

}

void Flow() { // new function created that th einterrupt will run every

time a pulse is found

sum++; // everytime this function is called an increment, ++ will ad 1

to that variable everytime the program runs

}

-

14

