GNG 2101

Design Project User and Product Manual

Per Diem - Personal Safety Application

Submitted by:

Team D1.5 - Code Bros
Maya Benhamou, 300173416
Riley de Gans, 300170104
Ekene Ebenebe, 8440519
David Todd, 300194033

Teo Vogel, 300215037

10th of April 2022

University of Ottawa

Table of Contents

Introduction
Overview
Conventions
Cautions & Warnings
Getting started
Configuration Considerations
User Access Considerations
Accessing/setting-up the System
System Organization & Navigation
Home Page
Exiting the System
Using the System
Emergency Contacts
Custom Check-In
Dexterity Test
Troubleshooting & Support
Error Messages or Behaviors
Special Considerations
Maintenance
Support
Product Documentation
Components

BOM (Bill of Materials)

10

10

11

12

12

Equipment list
Instructions
Testing & Validation
Conclusions and Recommendations for Future Work
Bibliography

APPENDIX I: Design Files

14

14

14

18

19

20

List of Figures

Figure 1 - Log In Screen

Figure 2 - Welcome Screen

Figure 3 - Emergency Contacts Screen

Figure 4 - More Options Screen

Figure 5 - Dexterity Test Screen

List of Acronyms and Glossary

Table 1. Acronyms

Acronym

Definition

API Application Programming Interface
SMS Short Message Service

Ul User Interface

i0S iPhone Operating System

1 Introduction

This User and Product Manual (UPM) provides the information necessary for the elderly
and disabled individuals to effectively use the Per Diem personal safety application and for
prototype documentation. Perdiem was developed for an elderly client that needed a personal
safety application to act as a proxy between them and specified individuals to confirm their daily
well being. After several meetings, the clients' needs were fully understood and put into
consideration during the prototyping stage. The latest prototype presented to the clients includes
the following features: daily check in notifications, missed check in notifications, user account
registration, a dexterity test, and Emergency contacts setup.

This document highlights the design problem and the final prototype, as well as
instructions to easily replicate this project. For the latter, a basic understanding of object oriented
languages is an asset but not a requirement. Steps to set up the application for a user, utilize the
functionality of the app, and troubleshoot possible errors while using Perdiem are covered in this
document.

This document is intended to be used by app developing enthusiasts, interested target users
curious to explore the backend action, as well as future project groups looking to take the app
from its current stage to the next level.

With respect to user data security and privacy considerations, there has been no
encryptions for security on the backend, hence it is advised to avoid exposing the application to
sensitive information. Security of app data is dependent on the user device, so for testers and
enthusiasts, an emulator is advised.

2 Overview

Often, elderly or disabled people that live alone face health or related risks and are unable
to call for help due to their limitations, which further escalates the possible risks in these
scenarios. It is important to have someone that checks in on these people to make sure that they
are safe, however, certain factors such as service costs or even personal preference presents a
challenge in ensuring the safety of these at risk people. The personal safety app (Perdiem),
resolves this issue both for users looking to avoid the service costs as well as users that do not
want routine in-person visits.

Our client needed an application that prompts the user to check in daily at a specified time,
within a specified check in window. This app is required to send emergency messages to each of
three registered emergency contacts in a specified order when daily check in is missed. Before the
emergency message is sent out in the case of a missed check in, the app is required to perform a
dexterity test within a specified time. This app is also required to function on iOS devices (an iPad
in the case of our client). Our client mentioned that similar apps that answered their needs were
either exclusive to the United States or did not function on their device operating system (OS),
Our application presents a functionality as well as cross platform utility advantage.

The first page a new user view on the app requests an email which becomes their user id.
After registration, the next page includes just two buttons, one for the emergency contacts and the
other to access the settings for the application.

PERDIEM

PERSONAL SAFETY
APPLICATION

Welcome! Enter your user ID:

LOG IN

Figure 1 - Log In Screen

MORE OPTIONS

—
1l
 S—

You are checked-in!

Next check-in:
Today 8:40

EMERGENCY CONTACTS

Figure 2 - Welcome Screen

2.1 Conventions

No special conventions used in this document.

2.2 Cautions & Warnings

Warning: the system must always be connected to WI-FI, this goes for use of the app and
testing of the back end code.

Warning: the app cannot prevent any injuries or harm caused to the user, the developers of
the app take no responsibility for any medical emergencies that the user experiences while missing
a check-in. Always contact the proper authorities and medical personnel when an emergency is
experienced, do not rely solely on the app’s communication with emergency contacts.

3 Getting started

3.1 Configuration Considerations

To configure the back end server of the application the following steps must be taken in order:

1.

2.

10.

11.

12.

13.

14.

15

Download VS Code here (click link)

Download Github here (click link)

Create a Github account here (click link)

Download the current backend code from Github here (click link) or from our MakerRepo
here (click link) and open the folder in your VS Code.

Create a Twilio account here (click link)

Follow the steps in the Twilio registration to receive a sender phone number and verify the
receiver phone numbers that will be used.

Create a Firebase Account here (click link)

Subscribe to the Firebase Blaze Plan here (click link)

Create a Firebase Project by clicking “Go to Console” once you have registered.
Configure Twilio with your Firebase console under the Extensions menu.

Configure the front end application with your Firebase project as explained here (click
link)

Follow the steps here (click link) to configure your VS Code with Firebase, Firestore,
Firebase Emulators, Node.js and Firebase CLI as well as deploy scheduled functions to the
server.

Edit the code as needed under the index.js file in VS Code, consult the documentation at
here (click link) and the comment provided by the developers before any and all changes

To perform non-destructive testing on your database consult the steps here (click link) to
deploy your functions to a local emulated database, this will also save the time it takes to
deploy the functions to the server when doing repetitive debugging.

. To report a bug or request maintenance of the code contact redacted@gmail.com (Riley’s

personal email)

To configure the front end project the following steps must be taken in order:

1 Download VS Code here (click link)

2 Download Github here (click link)
3 Create a Github account here (click link)

4 Download the current front end code from Github here (click link) or from our
MakerRepo here (click link) and open the folder in your VS Code.

5 Get the Flutter SDK here (click link)

6 Follow the steps here (click link) to configure your VS Code with Flutter

3.2 User Access Considerations

Given that the product in question is software, the only limitation on usability is whether
or not a potential user has access to a device which can download and run it. The application is
intended for use by those of advanced age, or those who live alone in their homes and want to feel
a sense of security. However, despite this, it could theoretically be used by anybody. For a user to
be listed as an emergency contact currently they must be verified through Twilio with a
verification code texted to them, this can be bypassed once full use of Twilio has been paid for.

3.3 Accessing/setting-up the System

All the user needs to do to use the product is download the application from the store, and
then launch it from their home screen. As of now, there is no function which allows the user to
make an account for themselves, so there is no requirement for the user to sign in to the
application every time they want to use it. To set up their daily check-in all the user needs to do is
select a time of day to check-in. In the future once development is finished ideally the user would
be able to select the length of the check-in window and the number/frequency of check-in prompt
notifications.

3.4 System Organization & Navigation

3.4.1 Home Page

Upon entering the app the user is given two options, emergency contacts where their
contacts can be changed or more options where the logistics of the check-in can be changed (ie.
check-in time, buffer period, frequency/number of check-in prompt notifications). As well on the
homepage the user gets a message that says “You are checked-in!”.

3.5 Exiting the System

To exit the app simply click the home button as you would any other app. When the app is
exited check-ins will continue as configured. To permanently exit the app and all of its features
uninstall the app from your device.

4 Using the System

The following subsections provide detailed, step-by-step instructions on how to use the
various functions or features of the Per Diem application.

4.1 Emergency Contacts

The user can input custom emergency contacts to the app. This information includes the
name of the contact, as well as their number. The user can perform this action by selecting the
‘Emergency Contacts’ option on the menu, and then typing in the aforementioned info. Every
action performed related to contacting these people is entirely automatic, and the user is present in
no part of the process.

3119

& B0 BACK

Emergency Contacts

Susan
(0] . 3443881809
=

EDIT

+ ADD CONTACT

Figure 3 - Emergency Contacts Screen

4.2 Custom Check-In

514

=

Settings
Check-in period

7:00 - 10:00

tap 1o edit &£

Buffer period

10:00 - 11:00

tap o edit &

Safety prompts freguency

15 min

tap o edit # |

Figure 4 - More Options Screen

The user can input a time period of their choosing to be the time during the day over which
the application will send push notifications asking them to check-in. This time frame can be set by
clicking the ‘Custom Check-In’ option on the menu, and then selecting the wanted frame.

Another function of this section allows the user to set the frequency of notifications sent.
This determines the time between notifications in the previously set time period. There is an
additional function that allows for setting a buffer period, which is a period of time after the set
check-in period during which the application will refrain from texting the emergency contacts.

4.3 Dexterity Test

2:30

!i)g

You have missed your check-in
time.

We want to make sure you are safe!

Type the word "YES" to
proceed with the check-in:

 NEXT

Figure 5 - Dexterity Test Screen

When a check-in is missed for the first time, after a short period the application will
request the user to perform a very simple dexterity test. This manifests in the form of a text box
asking for the user to type in the word ‘yes’. If the user fails to complete this test successfully,
emergency contacts are alerted.

5 Troubleshooting & Support

When errors are encountered while editing the backend code the simplest solution is to
revert back to the original function code as provided in the setup. If this does not solve the issue
you have altered a file out of the scope of the code that is irreversible. To fix this issue, start by
checking for updates to all software and use the command “-npm audit fix” in the command
prompt terminal of your project. If this doesn’t solve it, uninstall all of the installed software in the
setup, clear your recycling bin and restart the setup procedure.

To solve errors in the front end the best thing to do is also to revert your changes. This is
easy to do with the versioning control system provided by Git.

5.1 Error Messages or Behaviors

Any errors encountered while using the app will not present themselves as error messages,
rather as incorrect or incomplete functionality of certain features. To solve these issues record the
context of the errors (ex. Check-in time, check-in window, time of day, user information etc) then
emulate the app source code through VSCode and test different values for each variable recorded.
There is no simple solution to errors, many can only be resolved by extensive debugging that
should only be conducted by a qualified individual. In its current state the app validates all values
so no runtime errors or issues should be encountered, but if they are please report them as
described in the support section.

The backend is configured in such a way that errors will only occur when the values
originally written by the app do not align with the values read by the scheduled function. This will
occur when the user enters the Firestore database and manually changes values or deletes
documents/collections. To rectify this issue will usually be out of the skillset of the user and even
the developer without full context so the simplest solution is to never manually change values
unless the consequences have been thoroughly analyzed by a qualified individual. Allow any and
all changes in the database to be done by the app and scheduled functions, these features can
accomplish any of the changes you would want to make manually.

5.2 Special Considerations

No special considerations not already mentioned in the error messages and product
documentation sections

5.3 Maintenance

Given that the prototype is software, no maintenance is necessary on the part of the user.
With relation to the backend of the app, the only activities which could be considered maintenance
would be related to licensing and updates.

Some examples of things which would fall under maintenance would be bug fixes,
monitoring performance, ensuring continued functionality through changes in OS, and updating
the user interface where needed. Routine updates are also made to the coding languages and
software that the app and backend are based on, but generally these will not affect functionality.

5.4 Support

For back end support contact Riley at redacted@gmail.com (Riley’s personal email) and
for front end support contact Teo at redacted@gmail.com (Teo’s personal email). Also consult all
of the links given in the setup procedure, especially https://firebase.google.com/docs/ which will
provide the full documentation and examples for all Firebase features. When contacting for back
end support please send a screenshot of how your database is organized, the link to where your
function code can be downloaded and screenshots of any error messages encountered. For front

end support please explain the exact issue, provide screenshots of your settings page and provide
full context (ex. Check-in time, check-in window, time of day, user information etc)

6 Product Documentation

Twilio was chosen because of the ease of integration with Flutter and Firebase as well as
the lack of simple to use competitors.

Firebase was chosen for its volume of documentation and reliability as a database as well
as function scheduler. Other databases could be used but will not be compatible with the backend
code in its current form. If another database is chosen it must be able to schedule functions and
store the required data as well as be compatible with Flutter. The connection between Twilio and
the Database can be made with Flutter as a middleman, so Twilio compatibility is not required for
the database, but it severely complicates coding the new functions and requires changes in the app
code. Non-destructive performance testing for Firebase and Twilio can be done using the Firebase
Emulators as described in the setup as well as deploying to the actual server, although this can
damage the data stored.

The scheduled function was built using pseudo code that basically would iterate over all
the users in the database, determine whether each was in emergency or not, then using the Twilio
API to send a text message to each of their stored contacts. Considerations when recreating or
changing this code are how the data is organized (ie. the structure or hierarchy). If the data is
organized differently the function will not be able to access the correct information. Another
consideration to be taken is the edge case where the users check-in start time and check-in end
time are on different days, for example check-in from 11pm to 2am. An example of an issue
would be the current time is 1am, therefore the user is in their check-in window, but the current
time is less than 11pm, making it also appear like it is before the check-in time. The current
version of the code accounts for this, but before making changes we suggest drawing out all the of
the possible scenarios to have a complete understanding of the edge case.

Flutter was chosen for the front end given that it's a very modern and fast way to develop
cross-platform apps. That means that with only one code we can create an app for Android and
108, that previously would have been two different projects. It's also a very well documented and
easy to use framework and the apps that turn out from using it are very performant (they run fast).
This framework has a declarative UI philosophy and uses the Dart programming language. For
common developing scenarios you can access the Cookbook here (click link) and for taking
advantage of packages from other developers access the Dart packages site here (click link).

This project uses five external packages:

e flutter local notifications for sending check-in and dexterity test notifications

e shared preferences for storing user data

e firebase core & cloud_firestore for communicating with the back-end

e flutter launcher icons for generating the app icon

6.1 Components

6.1.1 BOM (Bill of Materials)

Table 1: Description of all materials used throughout the project.

Personal Safety Application

Material Cost (9) Source (link)
Use/Description
Software
GitHub Repository Internet hosted version control, 0 Link
for sharing and updating group
code
Git Local Version Control System 0 Link
Discord Team communication through 0 Link
video/voice calling and group
chat
VS Code Source-code editor used for 0 Link
developing flutter code
Flutter SDK Cross-platform development 0 Link
kit for creating code that works
on IOS and Android
Node.js SDK Cross-platform back-end 0 Link
JavaScript runtime
environment
Firebase server hosting A computer in the cloud to 0 (during Link
handle queries and storing data | dev/testing) prices
increase around
1000 users
Twilio SMS API An API for delivering SMS 0 (during Link
messages (for emergency dev/testing) prices
contacts) increase around
1000 users
Firebase database A database to store user data 0 (during Link
dev/testing) prices
increase around
1000 users
Google Workspace Cloud-based collaboration and 0 Link

(Drive, Docs, Slides, productivity tools for
Sheets) completing deliverables

Zoom Cloud-based teleconferencing 0 Link
and chat for client meetings

Stack Overflow Question and Answer Forum 0 Link
for collecting information
about coding features in Flutter

Wrike Collaborative project 0 Link
management and planning
Figma Graphics prototyping tool for 0 Link
Windows and I0S
development
Canva Custom graphic design 0 Link

platform for presentations,
documents and UI mockups

Lucid Chart Collaborative drawing 0 Link
platforms for charts and
diagrams related to Ul and
concept development

TestFlight IOS app for testing on end user 0 Link
devices without approval
through the Appstore.

6.1.2 Equipment list
1. Computer that can run VS Code for development and testing
2. Stable WI-FI Connection (ie. Router, Switch, AP, Ethernet etc.)
3. End User Test Device (Any Android or IOS Device)
6.1.3 Instructions
To prepare the app on an Android or IOS device simply go to the devices app store and download

the Per Diem app. For more complex instructions with respect to app code and backend setup see
the configuration considerations.

6.2 Testing & Validation

Test 1 - UI Font Size/Colour

The quantitative test performed was testing different colour combinations and font sizes
for different levels of eyesight. This would test whether different color combinations can meet the
target specification of using size 20 font at reasonable reading distance / varying eyesight
strengths and evaluate what the best colour combination and font size would be using measurable
tests. Ideally the colour combination and font size chosen could be read at any of the distance
measured, ensuring that even for the most visually impaired users the app is still accessible. To
test this, random strings of letters with decreasing font size were read from the UI prototype on
Canva at increasing distances from 0-10 feet, increasing at increments of 2 feet, to simulate eye
strength decreasing. A new string was randomly generated each time a distance was tested, using
font sizes from 6-32 decreasing in increments of 2. The tester stepped back to the distance being
tested and read as many letters as they could, the font size of the smallest letter they could read
correctly was recorded. This test was repeated for each of the colour combinations; green font on
white background, black font on white background, blue font on white background and white font
on black background. Results were recorded in a table then graphed as a line graph from a scatter
plot to see how each combination performed. As seen below the results show that a more
reasonable minimum font size target specification would be 32 instead of 20. At this size any text
could be seen from most distances and levels of visual impairment. As far as colour combinations,
white text on black background performed the best, with black text on white background coming
in second and blue and green text on white background producing around the same results in third.
The expected results for this test were that black on white would perform the best, followed by
green on white, then blue on white, finally white on black. Given these results black on white was

chosen for the first prototype UI and white on black was chosen for the fail-safe check-ins.

Max Readable Font Size vs Distance Away from
Screen for Different Colour Combinations

== Green Text / White Background == Black Text / White Background

== Blue Text / White Background White Text White Background
40
30
20
10
0
0 feet 2 feet 4 feet 6 feet 8 feet 10 feet

Distance Away

Figure 1 - Max Readable Font Size at Different Distance for Different Colour

Combinations Plotted for Analysis as Line Graphs from Scatter Plots

Test 2 - SMS API and Firestore Database Cloud Function Testing

For this test a low fidelity, specific prototype was made to test whether the emergency text
length had any impact on the delay time from when the message was sent to when the message
was received by the end user. This test was conducted using the Firestore database already created
for the app, with the Twilio SMS API extension implemented and a rudimentary cloud function
coded on Node.js. The way this prototype works is that in our database there are two collections,
messages and users. Under the messages collection, the extension works so that each time a
document is created with a “to” (phone number) and “body” field a message will be sent using the
contents of the document. The users collection is organized such that each user is assigned a
randomly generated ID and has fields for emergency state (true/false), name, emergency contacts
and check-in time. The basic cloud function is written so that each time the emergency state of the
user is changed, a test text message will be sent to a verified tester’s phone number. Messages of
different lengths were used as the test text and the time was measured between when the user’s

state was updated to the time the text was received, then plotted below for analysis. As seen in the

graph, there is no correlation between text length and delay time. This allows us to create a new
target specification for the maximum length of the emergency text. No maximum is imposed by
considerations for delay time, but a maximum of 160 characters is imposed by the SMS system. If
the message exceeds 160 characters it will be divided into multiple messages which will increase

costs related to the Twilio and Firebase services.

Delay Time to Send an Emergency Text for Different Text
Lengths

50

30

20

Delay Time (s)

10 20 30 40 50

Text Length (chars)

Figure 2 - Delay Time to Send an Emergency Text for Different Text Lengths Plotted for
or Analysis as a Line Graph from a Scatter Plot

Test 3 - UI Configuration and Battery Testing

For this test the Ul from the previous prototype was improved upon in Flutter to create a
medium fidelity, general prototype. This prototype was used to deploy the app as an apk to
Android users and through TestFlight to 10S users for functionality and usability testing. This
prototype was also used to test battery consumption as this was brought up as a concern by the
client in the second and third meetings. The test was performed by leaving the app open for
specific amounts of time in both the dark (black background, white text) and light (white
background, black text) modes, then the battery consumption was recorded at each time interval
and plotted below for analysis. Dark mode consumed 0.08% battery per minute while light mode
consumed only 0.06%. This shows us that technically light mode is more efficient, but there is no

considerable difference, similar to the findings with readability. This means that the choice

between these modes will be based on final feedback from the client on aesthetics and usability, as

both modes perform very similarly across two different tests.

Battery Loss Over Time Using App in Light and Dark Mode

@ Battery Loss % (Light Mode) 0.06*x +0 @ Battery Loss % (Dark Mode) 0.08"x + 0.2
2.0 <
1.5
1.0 ® ® @ ®
0.5
0.0 -

0 5 10 15 20

Time on App (mins)

Figure 3 - Battery Loss Over Time for Different Ul Configurations Plotted for
Analysis as Linear Fits from Scatter Plots

7 Conclusions and Recommendations for Future Work

An important skill sharpened over the course of this project was time management. For all
of us, this was a very intensive semester, so it was imperative that we used our time effectively. To
facilitate this, we accommodated team members which were having particularly difficult weeks by
lessening their work loads. This system worked well for us, up until the prototyping phase, where

it was decided that the coding and documentation would need to be handled by different members.

From this, a lesson was learned in communication. Given that certain members of the team
did not have the same level of understanding of certain aspects of the application as those who
were working on it, weekly meetings were necessary to facilitate a cohesiveness between the

deliverables and product.

Given more time to work on this project, the first functionality which would be
implemented would be a pause check-in function. This was abandoned relatively deep into
development of the application due to how unexpectedly complex it was to create. This function,
although unnecessary to the products overall function, would avoid potential annoyance for the
user in the form of unwanted, or unneeded check-ins. For example, if the user were with family,
and did not feel the need to be checked in on, they could pause it for however long they were with

them, and it would automatically turn back on once the timer ran out.

Another function which was requested by the client was a hike mode. Although the overall
description of this function given by the client was quite vague, it essentially boiled down to a
function which would, when activated, be a mini check in on the user. Instead of it being only a
daily check-in there would be another one at the time given by the user to when she would get
back from her hike or any outdoor activity. This is an added safety measure to make sure that
during the hike if something would happen the users’ emergency contacts would be made aware
and contact the authorities if necessary. As well as, adding an additional GPS tracker to help
locate the user to their emergency contacts if they don’t check within a period of the predicted

time of their activity.

8 Bibliography (Web Ressources)

https://code.visualstudio.com/download

https://desktop.github.com/

https://github.com/

https://github.com/rdegans/GNG2101_Personal Safety

https://makerepo.com/MayaBen/1147.ong-2101-d15-perdiem-personal-safety-app

https://www.twilio.com/login

https://console.firebase.google.com/u/0/

https://firebase.google.com/pricing

https://firebase.google.com/docs/web/setup

https://firebase.google.com/docs/functions/get-started

https://firebase.google.com/docs

https://firebase.google.com/docs/emulator-suite

https://docs.flutter.dev/get-started/install

https://docs.flutter.dev/get-started/editor?tab=vscode

APPENDICES

9 APPENDIX I: Design Files

Table 3. Referenced Documents

Document Name

Document Location and/or URL

Issuance Date

MakerRepo

https://makerepo.com/MavyaBen/1147.gng

-2101-d15-perdiem-personal-safety-app

April 10th,

2022

