
GNG1103

Design Project User and Product Manual

Inverse Kinematics Solver

Submitted by :
GNG 1103 Group C03

Benoit Tremblay (300236751)
Rebeca Poulin (300236741)
Jess Beardshaw (300227707)
Isabelle Barrette (300228564)

Sarah Alkadri (300245117)

April 8th, 2022
University of Ottawa

Table of Contents
Table of Contents 2

List of Acronyms and Glossary 5
Table 1. Acronyms 5
Table 2. Glossary 5

1. Introduction 6

2. Overview 7
Figure 1. Drawing End-Effector 8
Figure 2. Camera End-Effector 9
Figure 3. Mounted Camera End-Effector 9
Figure 4. Sensor System 10
Figure 5. User Interface Return Page 10
Figure 6. User Interface Drawing Page 11
Figure 7. Corrosion Detection Block Diagram 11

2.1 Cautions & Warnings 11

3. Getting Started 12
3.1 Inverse Kinematics 12

3.1.1 Compatibilities 12
3.1.2 Mathematical Concepts 12

Figure 8. Inverse Kinematics 13
3.1.3 Coding 13

3.2 Corrosion Detection Code 13
Figure 9. Corrosion Detection Setup 13

3.3 User Interface 14
Figure 10. User Interface Main Page 14

3.4 End Effectors 14
3.5 Camera 15
3.6 Safety 15
3.7 User Access Considerations 15

4. Using the System 17
4.1 Corrosion Detection 17
4.2 Inverse Kinematics 17

Figure 11. Inverse Kinematics Variable Settings 17
Figure 12. Inverse Kinematics Pins 18
Figure 13. Inverse Kinematics Compilation 18

4.3 User Interface 18
Figure 14. User Interface Camera Page 19

4.4 End Effectors 19
4.5 Camera 19

4.5.1 ArduImageCapture Instructions 19
4.5.2 Compiling in Arduino IDE 19
4.5.3 OV7670 Hardware Connections 19

4.6 Safety 20
4.6.1 Hardware Setup 20

5. Troubleshooting & Support 21
5.1 Error Messages or Behaviors 21

5.1.1 Corrosion Detection AI. 21
Figure 15. String of commands in Command Prompt to reach desired folder directory 21
Figure 16. Error message received because of scikit-image problems 21
Figure 17. Error message from imageTools.py about cv2 (OpenCV) 22
Figure 18. Images from the test folder being processed within the program. 22

5.1.2 User Interface 23
5.2 Special Considerations 23
5.3 Maintenance 23
5.4 Support 23

6. Product Documentation 25
6.1 Prototype III 25

6.1.1 BOM (Bill of Materials) 25
Table 1. Original bill of materials with total product cost estimate 25
Table 2. Bill of materials with total product cost estimate 26

6.1.2 Equipment list 27
Table 3. Equipment list and resource description 27

6.1.3 Instructions 27
6.1.3.4 End Effectors 28

Figure 19. End-Effector Models 29
Figure 20. Drawing End-Effector 29
Figure 21. Camera End-Effector 30

6.1.3.5 Safety 30
6.2 Testing & Validation 31

Table 4. Testing and planning 34

7. Conclusions and Recommendations for Future Work 35

Bibliography 36

Appendices 39
Appendix I: Design Files 39

Table 5. Referenced Documents 39

List of Acronyms and Glossary
Table 1. Acronyms
Acronym Definition

BOM Bill of Materials

IK Inverse Kinematics

GUI Graphical user interface

Table 2. Glossary
Term Acronyms Definition

Bill of Materials BOM List of materials we used for the
project along with their prices.

1. Introduction
John Faurbo and the Royal Canadian Navy need a robotic arm that has the ability to detect,

remove and paint over corroded areas to ensure proper maintenance on the Halifax class warships. Cost,
ease of use, proportions and safety of product are key to creating the best product for the client’s needs.

To solve his problem, we have put together a list of prioritized needs, target specifications, and
similar existing products for benchmarking.

We have accumulated a list of the users interpreted needs, including function and non-functional
requirements, as well as metric constraints. Our target specifications include the ideal and marginal values
given to us by John Faurbo. In addition to the design criteria, we have begun to benchmark and research
other solutions that satisfy our interpreted needs. We will use these to begin our conceptual design in the
future.

We explored the different concepts belonging to 5 subsystems that will collectively join to form a
final functional solution. We have divided our functional solution into five different subsystems including
the user interface, the three end effectors, and the overall coding and programming of the robot. Each
team member is responsible for generating ideas for each subsystem, discussing boundaries and
relationships between the subsystems so the concepts are interchangeable in the final solution. From our
individual ideas, our team created a selection matrix by discussing the requirements, similarities, and
drawbacks and created three fully functional solutions and compared the global concepts with respect to
our design criteria. The best solution is chosen, from which we will present to the client for feedback.

The end effectors are designed with respect to each task needed to be completed according to the
design criteria. It is ideal for the arm to be able to translate efficiently and effectively from each position.
Each position is then associated depending on the specific end-effector. To ensure portability and
mobility, we have included “resting pose”, where the arm will return in a compressed manner to help with
transportability. These poses are achieved through inverse kinematics in a code later described in this
deliverable. The inverse kinematics schemes are done in a 3D plane to achieve the three degrees of
freedom in the x, y, z plane. Three rotational matrices can be calculated to define the precision in space
associated with each end-effector pose.

We have compared different products with respect to the cost, time constraints, and projected
usability to determine how we should proceed. Other concerns discussed are technical and resourceful
risks surrounding circumstances not under our control, such as team member changes and receiving fault
products.

Discussing all the risks before beginning the next design process will prepare us for all
unfortunate scenarios that could set us back, preventing us from producing the best design possible. Our
team is committed to the quality of the final solution, displaying the commitment we have put into the
project.

This User and Product Manual (UPM) provides the information necessary for users to effectively
use the Inverse Kinematics Robotic Arm (IKRA) and for prototype documentation.

2. Overview
John Faurbo worked as a Naval Combat Systems Engineer with the Royal Canadian Navy. Now

working with Theo Eastmond at Naval Material Technology Management for the National Defense, they
intend to deploy robotic arms aboard the Halifax Class Vessel to aid in the ship's maintenance, mainly
with corrosion along steel surfaces.

Implementing robotic arms to perform simple tasks will free up crew members and sailors as well
as cut the cost of hiring more crew for simple jobs. The robotic arm and its end-effectors must scan and
record the geometry of the corroded regions. The surfaces can vary from simple and flat to curved planes
and intricately designed piping in compact areas. Once scanned, the robot can apply corrosion removing
spray, clean the surface from the coating, and spray a final layer of paint.

The previous attempt to solve this problem was met with difficulties as the arm is not
programmed with inverse kinematics (such as the Thor model), which increases the accuracy of the
motion to a certain position. GCODE is used to move each arm individually, but it is less effective
without inverse kinematics. In addition, the sensors bought by the Navy did not fit the model of the arm
used.

Our client needs a cheaper way to detect, remove, and paint over corrosion on the Halifax Class
Vessel. The ideal case for the cost of this project would have it staying within the predetermined 100$
budget, but it is possible to negotiate a slightly higher budget. The robot arm is required to fit into small
spaces to scan, analyze, and paint in all areas of the ship. The general use involves:
- Setting the arm in proximity to the problem area,
- Activating the camera to scan and identify problem areas in a point coordinate system, and
- Painting the identified targeted areas.

The robot must be usable in low oxygen areas and have lights or night vision to detect imperfect
areas anywhere on the ship in all lighting conditions. It must be deployable to paint the ship's outside on
cables or a barge moving around the exterior.

The robot arm should be able to hold up to 1kg of weight (camera, nozzle and paint) and
withstand approximately 140-180psi of pressure from the water hose. The robot arm must be powered by
120-volt outlets, the vessel's only energy source. The robot must be sustainable and only require minor
repairs every two to three months and significant repairs after six months.

The 3D printed robotic arm will need 3 degrees of freedom to perform actions with precision.
Accomplishing this requires inverse kinematic equations to determine the desired coordinate positions of
the robot's movement. For efficiency, the robotic arm must reach a minimum speed of 1m2 per hour.

The software used for the robotic arm design is open-source codes, G CODE and GRBL, and a
well-known programming language such as C or C++ or Python to program the robot's tasks. A useful
asset for the robot would be to capture a visual with the camera and send it over to Royal Canadian Navy
offices.

The robot's controls must be simple and easily accessible by any crew member. A handle or
carrying system is needed to ensure the user can maintain three contact points when climbing ladders or
stairs on the vessel. The ability to switch between different endpoints, catered to clients' demands, quickly
and efficiently is essential. If appropriate safety measures are implemented, crew members will be more
comfortable working with the arm, such as an automatic pause or shut down the system when a person
approaches the robot. Ideally, the robot is small or compactable into smaller pieces that do not exceed
20lbs (including its end-effector, which weighs less than 750g).

Our solution is a multi functional product that solves different aspects with inverse kinematics, a
corrosion detection software and sensors.

Figure 1. Drawing End-Effector

Figure 2. Camera End-Effector

Figure 3. Mounted Camera End-Effector

Figure 4. Sensor System

Figure 5. User Interface Return Page

Figure 6. User Interface Drawing Page

Figure 7. Corrosion Detection Block Diagram

The key features include our corrosion detection code, our camera end effector and its sensor
system as well as the many features such as the drawing patterns and stop function available for the use of
the robot arm through the inverse kinematics and the GUI.

2.1 Cautions & Warnings
The programs and separate components are still more in a prototype state therefore they are not

fully safety tested. They may very well malfunction, however there should not be any major concerns of
safety since we did implement measures to deal with such. Some occasions where it may be best to be
cautious would be avoiding walking in front of the arm or on its sides while in motion and paying
checking up on it every now and then so that it does not overextend itself.

3. Getting Started
Before starting, the user should download the Arduino IDE and the python compiler. Instructions

can be found on the Arduino and Python official websites:
- Arduino Download: https://www.arduino.cc/en/software (Arduino IDE version 1.8.18 is
used in this product)
- Python Download Instruction Guide:
https://wiki.python.org/moin/BeginnersGuide/Download (Python version 3.14 is used in this
product)

- NOTE: When downloading Python make sure that the “Add to PATH” box is checked
before completing the download

3.1 Inverse Kinematics
Begin by downloading the Arduino files for the Inverse Kinematic code.

- Github Link for Inverse Kinematic Code:
https://github.com/becapoulin/inverse-kinematics

This is a C++ open source code that calculates the required steps to be done by stepper motors in
order to move the robot arm to desired coordinates. This code is compatible and tested on a 3 DOF
robotic arm. To use the inverse kinematics code, you need a robot with 3 stepper motors, one for the base
joint, one for the shoulder joint and one for the elbow joint. The file entitled
IK_CODE_palletizing_stepper.ino is the main inverse kinematics solver code.

3.1.1 Compatibilities
The code is functional with a robot arm using a CNC shield, DRV8825 motor drivers, Nema 17

stepper motors to move the base, shoulder and elbow of the arm. To make this compatible, we needed to
understand how the CNC shield works. In our case, we only need the x, y and z connections. For the robot
arm used to test the code, the x coordinate is connected to the elbow joint, the y coordinate is connected to
the shoulder joint and the z coordinate is connected to the base joint.

3.1.2 Mathematical Concepts
Pythagorean theorem is used for the right angle triangles. SOHCAHTOA is used to evaluate the

sine, cosine and tangent angle relationships. The law of cosines is used when there is no right angle
triangle. These calculations show the math concept behind finding the angles needed to reach an (x,y,z)
coordinate if modifications are required:

https://www.arduino.cc/en/software
https://wiki.python.org/moin/BeginnersGuide/Download
https://github.com/becapoulin/inverse-kinematics

Figure 8. Inverse Kinematics
3.1.3 Coding
The code is simplified to fit a palletizing robot arm, where the angle of the Elbow servo motor

stays constant and partially independent to the rotation of the Shoulder servo motor. A float variable is
used for all variable types for maximum precision for inverse cosines involving significant decimal
places.

The code begins with setting the dir and step pin of each connection to a joint. The code requires
all the motor drivers to output and set their direction to either clockwise or counter clockwise, depending
on whether the angle is positive or negative. Calling the calculation function is used to obtain the angles
of the arm placement. For loops are used to increment the arm’s position by one unit until it reaches the
amount of steps required to reach the desired coordinate.

It is required to divide the value of the angle by 1.8 for the declaration to function with the 200
revolution stepper motors.

3.2 Corrosion Detection Code
In order to get the corrosion detection code running we need to first download to the corrosion

detection folder from the Github link here: https://github.com/benoittremblayy/Corrosion-Detection-AI

The next step is to then download Python 3.10.4, the most important part is to select “Add to
PATH” during the download process. This is the single most important step. Next download the following
Python libraries using the pip installer from the command prompt. The libraries are Numpy, Scikit-image,
Scipy, Matplotlib, OpenCV, by wavelets, and Jupiter.

After downloading the libraries, set up the directory to run from python. Using the cd command
we use it repeatedly until we reach the src folder which is where all of the python files are located. This
allows us to be able to run all of the python files simultaneously. The picture below is an example of the
directory being set up.

Figure 9. Corrosion Detection Setup

Finally, to run the code type “python main.py test 0.18 0.2” into the command prompt. Python
calls for the python program to be used. Main.py is the controlling code that calls the other python files to
be used. Finally “test 0.18 0.2” is the string to execute the code, the numbers following the test are the hue
saturation and edge threshold values when detecting the pixels.

https://github.com/benoittremblayy/Corrosion-Detection-AI

3.3 User Interface
To prepare the GUI and its functions the python libraries must be checked to see if they are

installed through the command prompt which is explained in the corrosion detection section. The
necessary libraries are only the pillow or PIL libraries which may come already installed within the
python software that is downloaded onto the computer. Once this is done and confirmed, the code file and
relative images must be prepared and their respective paths in the computer's folders must be adjusted in
the spot in green shown in the image below.

Once these have been adjusted to the environment, it is now time to run the code. This can be
done in the IDLE python interface by pressing run at the top or it can be pasted into the python interface
and run automatically. Once it has run the following image should pop up as a window to interact with all
of its functions which are explained later on in the manual.

Figure 10. User Interface Main Page

3.4 End Effectors
Both end effectors must be 3D printed with 0.8mm material thickness and 0.30mm filing. A

higher precision thread can also be used, but be cautious of printing times. Printing instructions vary
depending on the 3D printer used.

- Onshape link to download STL Files
To attach the end effectors to the robot, use 2 M3 bolts (minimum of 35mm in length) and a

corresponding nut fastener. The robot’s finger has two holes where the user may insert the end effector,
ensuring the holes are lined up and the end effector is oriented properly. Each bolt must be placed in
opposition (for example, a bolt head facing the left direction then the other must be placed facing the
right).

Ensure the sharpie is firmly held in place in the end effector by pushing on the sharpie with slight
force.

https://cad.onshape.com/documents/e08bc758d40d650376e9b5e5/w/a701e605c5533a47411f8cbb/e/5e958b536e39e7d002b3e31e

3.5 Camera
The OV7670 Arduino Compatible camera is used in conjunction with the corrosion detection software to
capture and save pictures to the user's computer. The code is a modification of Indrek Luuk’s guide to
using the OV7670 over USB import. Download the code using the Github link below:

Github link to Ov7670 Camera Code: https://github.com/jessbeardshaw/OV7670Camera-with-PIRsensors
Keep in mind the “LiveOV7670” library required and is included in the installation files.

To run the camera code, install and download the Arduino IDE (see section 3 “Getting Started”).
Follow the instructions in section 4.5 “Camera” under section 4 “Getting Started” for instructions on
downloading the ArduImageCapture image interface.

The following components are required for the wiring of the camera:
- A variety of male-female, male-male, and female-female wires (wire count depends on

personal setup). Minimum required 36x male-female wires.
- 1x Breadboard
- 1x Arduino Uno
- 1x OV7670 Camera, no preferably Fifo (see section 4.whatever for with fifo instructions)
- 2x 10k ohm resistors
- A pair of resistors to create a 5V to 3.3V voltage divider (650 ohm and 1k ohm, 1k ohm

and 2k ohm, etc…)

3.6 Safety
The motion detection sensors are implemented and tested to detect infrared presence within 7

meters. They alert any passerby of the robots movement by triggering a buzzer and blue LED on the
breadboard. Once the sensors are triggered, they send a signal to the LED and buzzer and an interrupt
function on the arduino will pause the movement of the arm for the timed duration. Assuming the sensors
are not re-triggered, the arm will resume the performing function.

Begin by downloading the code from
The following components are required for the wiring of the camera:

- A variety of male-female, male-male, and female-female wires (wire count depends on
personal setup). Minimum required 8x male-female wires.

- 1x LED
- 1x Buzzer
- Minimum x1 PIR sensor
- 1x 270 ohm resistor

The motion detection sensors do not require any additional set-up once the hardware is connected.
They function independently from the user control to prevent injuries.

3.7 User Access Considerations
The different types of groups that will be using this product are the high school educated

employees working on the Halifax Class Destroyer first and foremost. They do not need a technical
background so the product must be able to be used and controlled by anyone with any type of experience.

https://circuitjournal.com/arduino-OV7670-to-pc
https://circuitjournal.com/arduino-OV7670-to-pc
https://github.com/jessbeardshaw/OV7670Camera-with-PIRsensors

Another user for this product is a technical worker, possibly engineer, working for the Canadian
Navy. It is assumed that they would use the product for its intended purpose if necessary but will be
performing more technical tasks such as fixing software if ever there is the need for it. For example if
there is an error message in the code of any kind this is who would be fixing it.

4. Using the System
4.1 Corrosion Detection

Once the “python main.py test 0.18 0.2” is executed, the code takes the images from the data
folder and are inputted into the various python files. The pictures are run through the colour, texture,
image and imagetools python files. These files use the hue saturation and edge threshold values to look
for rust coloured pixels on the images as well as the areas around those pixels to create a texture and
compare to other rust images to determine if the considered area in the picture is rust. Once the picture is
considered corroded or not it assigns a value accordingly. Finally, the pictures that are given a value of
corroded, their file names are outputted onto a results notepad so the user knows which pictures/areas are
corroded.

4.2 Inverse Kinematics
To run the code, replace the length variables with the lengths for the shoulder and elbow links.

You can then enter the target coordinates at the top of the code.

Figure 11. Inverse Kinematics Variable Settings

The code is compatible with a CNC shield using the X, Y and Z step and dir pins. Depending on
the attachments they can easily be changed.

Figure 12. Inverse Kinematics Pins

Before running the code, verify and compile the code. Then connect the device running the code
to the arduino via USB connection, select the correct port, and upload the code.

Figure 13. Inverse Kinematics Compilation

4.3 User Interface
The code begins by importing the necessary libraries to execute the code downloaded and

installed beforehand. Once everything is set up, the code begins reading the defined variable, which in
this case is "emergency_stop," which has the pressing of the stop button interrupt the code,
"startcamcode" which runs it when its associated button is pressed. There is also "distance_wall" which is
the button pressed to print the entered distance from the wall in meters into the inverse kinematics, as well
as "takepicture" which saves the images to a folder in case of needed extra inspection. The last button is
the “camerafeed” which when pressed will run the camera feed code as well as the corrosion detection
software attached to it.

The main code contains a mixture of labels, frames, buttons and an entry box, which, combined
with all their conditions, create the user interface that you see when the code is running. When run, the
code will pop up the window shown in the “Getting Started” section, which contains the buttons and entry
box of the home page. Once the measurement is input in the entry box and the button beside it is pressed
it will input this distance in meters into the inverse kinematics code to ensure the drawings and scanning
are done effectively. This means it is now time to pick an end effector function, and if going in order it
would start with the camera one which will look like so.

Figure 14. User Interface Camera Page
A back button also appears in the top left corner of the screen which, when pressed, replaces the

“Open Camera File” and “Take Pictures” buttons with the end-effector selection buttons to allow the user
to access the other control interface without closing the GUI. Once the camera code has successfully run,
press the back button previously explained to return to a possible selection of the Paint end effector and
its code options to then draw the desired design. When selected, the shape will be drawn on the surface if
the proper end effector has been installed.

4.4 Paint End Effectors
Always ensure the end effectors are firmly attached to the robot arm using the appropriate bolt

and nut fastener. No additional setup information is required.

4.5 Camera End Effector
To run the camera code, open the Arduino IDE from the camera files. Keep in mind the file

contains the safety sensor code in the main void loop as well.

4.5.1 ArduImageCapture Instructions
Download the Github files in section 3.5 “Camera” under section 3 “Getting Started”and extract

the zip file and copy the "ArduImageCapture" folder into the Arduino "tools" folder next to the Arduino
"libraries" folder. Create a “tools” folder if it does not already exist.

- Example (on Windows): C:\Users\jessb\Documents\Arduino\tools
Creating the folder is essential in running the plug-in through the Arduino IDE. It can now be run through
the IDE by clicking /tools/ArduImageCapture.

4.5.2 Compiling in Arduino IDE
Copy the LiveOV7670Library to the Arduino "libraries" folder. Open the Camera_Code.ino in

the Arduino IDE. Make sure to select the appropriate board and COM pin (Select Tools/Board/Arduino
Uno).

4.5.3 OV7670 Hardware Connections
See below the Arduino and OV7670 connections. The XLC input pin MUST BE LEVEL

SHIFTED from 5V to 3.3V. See the page below on information about creating voltage dividers:
- Ohms Law Calculator: https://ohmslawcalculator.com/voltage-divider-calculator

OV7670 connections:
VSYNC - D PIN2
XCL - D PIN3 (must be level shifted from 5V -> 3.3V)
PCL - PIN12
SIOD - A4 (I2C data) - 10K resistor to 3.3V
SIOC - A5 (I2C clock) - 10K resistor to 3.3V
3.3V - 3.3V
RESET - 3.3V
D0, D1, D2, D3 - A0, A1, A2, A3 (pixel data bits 0, 1, 2, 3)
D4, D5, D6, D7 - PIN4, PIN5, PIN6, PIN7 (pixel data bits 4, 5, 6, 7)
GND - GND
PWDN - GND

https://ohmslawcalculator.com/voltage-divider-calculator

4.6 Safety
Ensure to download the OV7670 Arduino IDE by referring to section 3.5 “Camera” under section

3 “Getting Started”. Once the Arduino IDE is downloaded and open, uploading and running the camera
code will activate the safety sensors.

4.6.1 Hardware Setup
Some important remarks include the 270 ohm resistor needed from the PIR sensor to the LED.

The PIR sensors require a 5V connection. A supply this large will short circuit the LED and damage the
breadboard.

Follow the setup instructions below:
GND Arduino - GND
5V Arduino - POWER
POS Buzzer - PIN 9
NEG Buzzer - GND
POS LED - PIN 11 (270 ohm resistor)
NEG LED - GND
POWER PIR - POWER
GND PIR - GND
OUT PIR - PIN 9

5. Troubleshooting & Support
5.1 Error Messages or Behaviors

5.1.1 Corrosion Detection AI.
Prototyping for the corrosion detection AI consisted mostly of fixing the numerous errors found

within the code. This project is now 6 years old so many libraries have updated since and many strings
have changed or been outright deleted which prevents the code from working properly. Below are the
notes taken during the entire troubleshooting process and the various ways to fix the sections of the code
that displayed an error message.

Firstly, when looking at the ReadMe file given by the code creator, it said to run a python command from
the src directory (the file containing all the python files) to run them all at once. As a very inexperienced
programmer, this was a big challenge. Python needed to be set up with a command prompt to run codes
from the directory. To find the specific directory needed, use "cd NameOfFolder" several times to set up
the directory to the src folder.

Figure 15. String of commands in Command Prompt to reach desired folder directory

The following error encountered was due to old code. The error that occurred had to do with the
scikit-image library. Essentially the function skimage.util.pad gave an error message saying it does not
have the pad attribute. The thread skimage.util.pad was removed from scikit-image, the patch notes stated
that numpy.pad can be used for the same effect. After pip downloaded the NumPy library, the error
message was fixed.

Figure 16. Error message received because of scikit-image problems

The third encountered issue is found within the imageTools.py file, and it says Assertion Failed.
To fix this issue change the directory to suit the files directory in the laptop.

Figure 17. Error message from imageTools.py about cv2 (OpenCV)

To fix this change the directory to the first image in the file it is trying to read, so:
C:\Python\Corrosion detection2\corrosion-detection-master\data\test\(name of first image) (ex:picture.jpg)
This fixed the issue, and the program finally imported and classified the images, which brought us to the
following error. The images in the files are being shown as scanned and imported into the command
prompt.

Figure 18. Images from the test folder being processed within the program.
In the Image.py file, there is an issue on line 99 and 126. The error message is: if self.hsHist != None and
hist!= None:ValueError: The truth value of an array with more than one element is ambiguous. Use
a.any() or a.all(). Add .any() after each hist in lines 99 and 126.

The error string below should be the one shown in the paragraph below. This is a relatively simple fix. On
line 23 of the main.py change arg to argv. There will also be the same arg string a couple lines down,
change that to argv as well.
File "C:\Python\Corrosion detection2\corrosion-detection-master\src\main.py", line 23, in getInput

edgeThr = sys.arg[3]
AttributeError: module 'sys' has no attribute 'arg'. Did you mean: 'argv'?

The before last error was once again an issue with scikit-images changelogs. When using the
.remove_small_holes function in the program, the operation min_size was no longer a function that
existed. Using area_threshold instead fixed the critical issues and brought us to the final result.

Here is a video showing the program being executed and its end results: https://youtu.be/xPfUXLRoVfo

5.1.2 User Interface
There are not many troubleshooting issues for the code, however this section will cover the few

common possible errors. First off is in the setup section of the manual, where it is mentioned to put in the
proper path for the image’s file. This is sometimes a problem since once the path is copied and pasted
from the files area of the computer, its format is a bit different than it should be to work. The backslashes
must all be doubled and it must be confirmed that the whole path is wrapped with quotation marks and
parentheses, if not, the image will not be found and the background will be blank. This error should not
cause any major issues but does take away from the look of the interface. There are also paths to open the
proper other codes and apps needed to run everything smoothly and they will have to be double checked
for the same formatting issues that would cause malfunctions.

The other already previously mentioned troubleshooting error is not having the proper libraries
imported and installed. There is a Pillow library and filedialog used in the code which must properly be
installed in the command prompt and imported into the code with the proper lines at the very beginning.

Sometimes the formatting of the placement of widgets is for some reason disliked by the python
runner and so it is possible that everything including and after the “.place” or “.pack” have to be moved
down into a new line below with the name of the widget to be placed or packed in front.

5.2 Special Considerations
For the IK code, make sure to not put any negative values for the x coordinate to make sure that

the arm stays intact.
When downloading Python check the “Add to PATH” box before completing the download. The

code will not run without this setting being enabled.

5.3 Maintenance
The majority of this project does not require maintenance, the only thing is the marker needs to be

replaced when the ink is depleted.

5.4 Support
For the corrosion code using the changelogs for the various python libraries will help in updating

the code in the future. In addition, if there is confusion, fixing certain issues using StackOverflow is a

https://youtu.be/xPfUXLRoVfo

very important tool. StackOverflow is a website where users can create threads discussing certain Python
issues that other users encountered. The link to the website is the following: https://stackoverflow.com/

Any other coding issues also have troubleshooting explanations available on the same website
https://stackoverflow.com/

https://stackoverflow.com/
https://stackoverflow.com/

6. Product Documentation
6.1 Prototype III

6.1.1 BOM (Bill of Materials)
The first bill of materials was created with only an idea of the kinds of parts that were needed for

this project. In addition, the budget restraints were uncertain as they were still shifting and being finalized.
It was decided that the majority of our money would be spent on the camera end effector. The
programming/software portion was assumed to be free so that the money could be spent on the physical
components. The client had mentioned that the most crucial parts of this project were the inverse
kinematics, GUI (user interface), safety, and finally the camera end effector. This worked out perfectly
since the corrosion detection program we found could work alongside the camera end effector. There are
PIR motion sensors in the bill of materials because they will be used as the main tool for the safety part of
the arms project. One of the main issues with the cost estimate is the shipping times. With only about 2-3
months to build, code and design the end effectors and arm the shipping time of various materials had to
be taken into account because they were sourced from websites like amazon. This occasionally led to
more expensive parts being chosen to still have time to test after being delivered.

Table 1. Original bill of materials with total product cost estimate

Item Name and Link Quantity Cost ($) Justification

Camera
Arducam with adapter
board

1 23.68 The camera chosen needs to be compatible
with Arduino software in order to access the
data (live video feed) and send it to other
devices.

PIR motion sensors
PIR motion sensors

1 10.59 These sensors will be added to different
end-effectors to ensure safety while operation.
(soldered)

3D printing materials 0.00 Since most of our end effector components
will be 3D printed, we will be using the
machines and materials provided in the Maker
Lab.

Arduino kit and wires 1 0.00 (Free at
Maker Lab)

The Arduino will be useful for the spray guns
in order to connect the sensors and triggers to
a specific output in our software. This kit
includes a breadboard and some resistors in
order

https://www.amazon.ca/Arducam-Megapixels-MT9D111-Camera-Adapter/dp/B013O8QB8O
https://www.amazon.ca/Arducam-Megapixels-MT9D111-Camera-Adapter/dp/B013O8QB8O
https://www.amazon.ca/Onyehn-Pyroelectric-Infrared-Detector-Modules/dp/B07GJDJV63/ref=sr_1_5?keywords=PIR+Motion+Sensor&qid=1645106335&sr=8-5

Soldering kit 1 0.00 (Free at
Maker Lab)

Used to mend our wires together and solder
them to our things like our camera and sensors
to ensure that they will not be easy to break off
or to fall apart simply by moving.

Sharpie Marker 1 0.00 (Free
from home)

Total product cost (without taxes or
shipping)

38.67

Total product cost(including taxes
and shipping)

46.61

The final bill of materials received important changes that were made to stay under budget.
Firstly, the camera module picked would take a long time to ship as well, and once we got our bill of
materials approved the price jumped up to 37$ which was a major issue with the budget only being 50$. It
was decided that the OV7670 camera would be used because it was cheap, could arrive rapidly and there
were multiple tutorials found on how to program/use the camera. The tutorials help with cutting down on
the time needed to troubleshoot that portion of the project. It was also decided to change the paint
remover end effector which no longer required adjustable clamps further lowering the budget. Finally, the
old PIR sensors were swapped with a more expensive kind but with the budget cuts, a product that had
higher reliability according to amazon reviews was available to purchase. Many components remained the
same, the Arduino board, 3D printing materials, bolts, and nuts. These were because they are essential
parts of the composition of the product. For example, the Arduino board allowed the testing of the
camera, sensors, and even the inverse kinematics code without the arm being complete yet.

Table 2. Bill of materials with total product cost estimate

Item Name and Link Quantity Cost ($) Justification

Camera
OV7670 VGA CMOS
Camera

1
23.68 The camera chosen needs to be compatible with

Arduino software in order to access the data (live
video feed) and send it to other devices.

PIR motion sensors
PIR motion sensors

1 14.99 These sensors will be added to different
end-effectors to ensure safety while operation.
(soldered)

3D printing materials 0.00 Since most of our end effector components will be
3D printed, we will be using the machines and
materials provided in the Maker Lab.

https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1
https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/HiLetgo-HC-SR501-Infrared-Sensor-Arduino/dp/B07KZW86YR/ref=sr_1_3?keywords=pir+sensor&qid=1646249497&sr=8-3

Arduino kit and wires 1 0.00 (Free
at Maker

Lab)

The Arduino will be useful for the spray guns in
order to connect the sensors and triggers to a
specific output in our software. This kit includes a
breadboard and some resistors in order

Bolts and Nuts 14 0.00 (Free
at

MakerLab)

Used to attach end effector parts together and attach
the end effectors to the robot arm.

Sharpie 1 0.00 The Sharpie is used for the paint/corrosion remover
end effector to demonstrate its functionality to the
client on design day.

Total product cost (w/o taxes or
shipping)

38.67

Total product cost (including taxes
and shipping)

46.61

6.1.2 Equipment list
Table 3. Equipment list and resource description

Item Name Description Type Prototype # Source

CAD software
(Onshape)

This will be used
to create a
computer-aided
design of different
end effectors.

Analytical
(Software)

1 https://www.onsha
pe.com/en/

Arduino Studio
(Tinkercad)

To test circuits. Temporary
software

2 https://www.tinker
cad.com

3D printer To 3D print all
end effectors and
attachment pieces.

Equipment. 3 MarkerSpace

Coding
Software(Python,
Arduino IDE)

To implement
code.

Software 4 Personal device

6.1.3 Instructions
Run the GUI code and a window will pop up.

https://www.onshape.com/en/
https://www.onshape.com/en/
https://www.tinkercad.com
https://www.tinkercad.com

The functions of the buttons that show up are explained in more detail in the “Using the System”
section, but they will be briefly explained again here. The distance of the robot arm from the wall should
be input in meters in the white box at the top of the screen and input into the inverse kinematics code by
pressing the button next to it.

Next, select the button with the end effector that you have installed, usually the camera one first.
Run the camera and corrosion detection codes using the “Open Camera Files” button as well as the star
button and any emergency can be interrupted by the pressing of the stop button at the top.

Next, press the back button to return to the main page once the camera code has been completely
executed and press the next end effector button, which should be the paint one. This will bring the user to
the final interface page, which presents three new options in the center of the screen , three different
shapes that can be drawn by the arm. Once one of them is selected the code will begin and can be stopped
or resumed by the stop and start buttons at the top of the screen.

Once the job is complete, simply close the pop up window GUI and it will stop running the code
altogether.
Link to code : FinalGUI_code.py

6.1.3.4 End Effectors

https://uottawa-my.sharepoint.com/personal/jbear012_uottawa_ca/Documents/GNG1103%20Project/User%20Interface/code/FinalGUI_code.py?csf=1&web=1&e=g9ewnT

Figure 19. End-Effector Models
Attach the sharpie holder and the rectangular block together using a bolt and nut and place a

sharpie firmly into the sharpie holder. The final product should look like the image below.

Figure 20. Drawing End-Effector
Now, place the camera into the 3D printed box and place the lid on top. Secure the lid using four M3 bolts
and nuts. The final product should look like the image below.

Figure 21. Camera End-Effector

6.1.3.5 Safety
With the same breadboard used and arduino used for the camera, follow the instructions

below to wire the sensors, LED and buzzer together.
Using the same code as that of the camera test and uploading that code from your computer to the
Arduino, test the functionality of the sensors by passing your hand in front of the sensors

6.2 Testing & Validation
Test

#
Objective Description and Test Method Test Duration

and Date
Results

1 Mathematical
code concept

To have a logical and functional
mathematical approach of the

functionality and movement of the
arm.

1 or 2 days
Reading week

The mathematical
concept has been

achieved and
implemented into code.

2 Analysis of
materials

Lots of materials are used in this
design, such as different 3D printable

materials, cameras, sensors and
Arduino components such as the

wires and diodes. These will have to
be tested for their effectiveness and

researched extensively

2 or 3 days
Reading week

Through research we
have found sensors,

cameras and more that
will be compatible with
our Arduino as well as
with the end-effectors

that are to be 3D printed

3 Engineering
drawing of

end-effectors

Detailed engineering drawing on
paper of our design and the

orthographic projections to show all
sides and important components

2 days
Reading week

Hand drawn engineering
drawings have been

made and are able to be
transformed into

Solidworks 3D models
with a few necessary

modifications but have
proven very useful to

the transformation into
3D models

4 Basic code
for arm

movement

Once the mathematical concept is
achieved and the inverse kinematics
equation is understood, the equations
can be translated to code for future

testing

2 or 3 days
While the

drawings are
being made

The code compilation is
complete with no errors
and using only 29% of
storage. Code has been
tested on tinkercad for
servo motor response.

5 3D modelling
on Onshape

or
Solidworks

3D drawing or model on a 3D
modelling site to determine our

“final” design with more precision
and to better our understanding of our
design and ensure our understanding

of it.

2 days
As soon as
engineering

drawing is done

Successfully created our
end-effectors using

Solidworks and
transferring them to
onshape for any last

minute modifications

6 Camera and
corrosion
detection

code

If all goes well, the corrosion code we
have found may be accessible to us

and may be able to be translated, and
that translation to a language that we

4 days
While drawings
and models are

being made

understand would be this step.

7 Create user
interface and

test with
what we have

Attempt different user inputs and see
how these are processed and

outputted compared to the expected
outcome.

1 day
Before the first

session with
robot

Buttons do not function
properly, give errors
when they are coded

with a purpose but the
look that we want and

need is achieved

8 Test materials
with what we

currently
have

Materials have been analyzed, and the
best ones are chosen and must be put
to the test to see if they are good for
our product. They will be tested in

durability and compatibility with the
arm and the code.

2 days
First session

with robot arm

Parts to be used on robot
and arduino have been

acquired and seem to be
sized properly and not
weigh too much that

they are able to be used
in our 3D printed end

effectors that are also in
a material that works
and is not too heavy

9 Test arm
movement

code on arm

The algorithm and code for the
inverse kinematics movement of the
arm should be completed, and it will
be tested on the arm as soon as the

opportunity presents itself so that any
issues are discovered and it can be

modified accordingly quickly

1 day
First session

with robot arm

Will be tested once the
robot arm is completed

March 14th, 2022

10 Paper or
cardboard

quick
prototype

Quickly make a 2D and/or 3D
tangible model of end-effectors as a
size comparison to the actual robot
and objects that will be used with
them to be sure of our dimensions

> 1 day
First session

with robot arm

Will be tested once the
robot arm is completed

March 14th, 2022

11 Retouch
engineering
drawing and
3D modeling

of
end-effectors

Any miscalculations or wrong
dimensions are discovered through

the previous tests and now the
drawings and models can be

readjusted to accommodate our new
discoveries

1 day
After first

session with
robot

Will be completed one
day after the first

session with the robot,
March 15th, 2022.

12 3D printed
model of

what we have
designed so

far

The 3D model is adjusted and can
now have the pieces printed and

assembled for testing on the robot. If
the previous analysis and prototyping

were effective, this should be done
once or twice to minimize the number

1 or 2 days
Second session
with robot arm

Will be completed
during second session

with the robot arm,
March 17th, 2022

of materials used and the overall cost

13 Test code and
user interface
with newly
3D printed
pieces and

arm

Pieces are printed and the
end-effectors are assembled,

everything can be wired and plugged
into the Arduino in its respective

place, and the code can be tested on
the arm and the user interface. If any

errors occur, the code and user
interface will have to be modified

accordingly

Consistent with
prototype

testing. Five
consecutive test

trials with no
errors.

The code is functioning
with the newly printed
end effectors. The user
interface has yet to be
implemented with the

code.

14 Make sure
attachments

and necessary
scenarios are
compatible

with
end-effectors

and code

The final test will entail putting all
pieces together for one last test,

running multiple scenarios with the
user interface, arm and all the end

effectors to simulate the users'
experience and ensure that it is

possible, simple and easy to
understand for the high school

students who will most likely be
running the interface and

interchanging the end effectors

Consistent
prototype

testing. Five
consecutive test

trials with no
errors.

Corrosion remover
attachment works with
the inverse kinematics
code, it draws a square

which will be the
coordinates for the

search pattern.

15 Adjust all
necessary
things and
create the

final versions
of

end-effectors,
code and user

interface

Once the group and client have
settled on a final version and has been

through the tests previously
mentioned, it is time to bring it to life

and create the final version of
everything necessary, test it on the

robot arm and if all goes well, there
will no longer be any need for

prototyping

Either run out of
time or be

satisfied with
the final product

before design
day

Final end effectors,
inverse kinematics code,

safety features and
corrosion detection have
been implemented and

tested.

16 Test
Corrosion
detection

program and
fix bugs to
properly
detect

corrosion

Currently the code struggles with
assigning values according to whether

there is corrosion or not in the
picture. With the TA and other people
we will try and fix the current issue

Either run out of
time or until the

error is fixed
within the code

Final version of the
corrosion detection code

has been fixed and
debugged.

17 Camera
pictures
running
through

Now that the camera is complete we
can save the pictures it takes into the
input file for the corrosion code so it

scans those pictures taken

Code needs to
work properly to
detect properly
but we can test

The images taken with
the camera now

successfully run through
the corrosion detection

Corrosion
Program

the input
method now that

the camera
works and the

code runs

software.

Table 4. Testing and planning

7. Conclusions and Recommendations for Future Work
For a software heavy project this turned out to be a very big challenge for a group of students

with little to no past programming experience. We had to learn programming of all types, C++ for the
inverse kinematics, Python for the GUI and Corrosion Detection AI and Arduino for the camera, sensors
and inverse kinematics. Learning all these different types of programming proved to be a challenge
spending countless hours watching youtube videos, reading online websites and threads to understand
how the different subsystems work and how to implement them. Overall we are very proud of the work
we have done along with our final prototype that was presented for design day. The following paragraphs
are different lessons learnt and a plan for if we had more time to work on this project.

In order for our team to develop a strong solution to the problem initialized by John Faurbo, a
clear set of interpreted needs and design criteria are essential. Functional and non-functional needs, as
well as constraints and target specifications must be thoughtfully planned in order to create the best
solution to the problem.

Upon completing sketches to demonstrate our ideas, we discussed and analyzed possible
consequences for each conceptual design. This allowed us to idealize and combine the best of our
collective ideas into five functional subsystems to our solution. We were able to successfully stay within
our constraints and produce descriptive sketches of all of our ideas to eventually bring them to life.

It is critical to plan our prototypes accordingly as design day is quickly approaching. Our team is
dedicated to producing the best product possible, covering all our clients' needs. Planning responsibly
according to delays, changes, and unexpected, unforeseen circumstances is essential. After the client
meeting, the team took the feedback and prepared our bill of materials, prototype test plan, and final
design drawings.

The prototyping portion of this product did prove to be the most challenging portion, as expected.
We have had our fair share of difficulties with this prototype from our many failed attempts at
end-effectors and coding troubles. However, our plan has slowly but surely come together, and we will
continue the improvement of our prototype to produce the best product possible for our client. We had to
often work together to solve the issues or ask for help from outside sources such as the TAs and other
students/friends. This helped us to learn teamwork as well as further understanding our different skills,
strengths and weaknesses. Our team has made substantial progress both individually and as a team.

If we had a couple more months to work on this project we would have focused our time and
energy on making all of the different components work together more smoothly so that the user is able to
easily control the robot and do its different tasks. We found how to simultaneously make all the
components work together but due to time constraints we were unable to. In addition, we would like to
work on improving the accuracy of the corrosion detection code.

Finally, our group was very productive so in the end all of the subsystems we intended to
implement ended up being in the final product. Our original plan was to have the camera end effector,
paint end effector, inverse kinematics, corrosion detection AI, safety feature and GUI.

Bibliography
Agustian, I. (2021, March 25). 3DOF inverse kinematics for arm/leg of robot using Arduino.

Electrical Engineering Dept. University Of Bengkulu. Retrieved March 4, 2022, from
http://te.unib.ac.id/lecturer/indraagustian/2014/05/3dof-inverse-kinematic-for-armleg-of-ro
bot-use-arduino/

Arducam. (2016, December 19). Arducam 2 megapixels MT9D111 Auto Focus Lens Camera Flex
module with Adapter Board. Amazon.ca: Electronics. Retrieved February 12, 2022, from
https://www.amazon.ca/Arducam-Megapixels-MT9D111-Camera-Adapter/dp/B013O8QB8
O

Arducam. (n.d.). Arducam Mini Module Camera Shield with OV2640 2 megapixels lens for Arduino
Uno MEGA2560 Board & Raspberry Pi Pico. uctronics. Retrieved February 12, 2022, from
https://www.uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-ardui
no-uno-mega2560-board.html

Arduino Engineer. (2015, March 18). Autonomous paintball sentry gun using Arduino. Use Arduino
for Projects. Retrieved February 14, 2022, from
https://duino4projects.com/autonomous-paintball-sentry-gun-using-arduino/

Arduino. (2022). Servo. Servo - Arduino Reference. Retrieved March 4, 2022, from
https://www.arduino.cc/reference/en/libraries/servo/

anirbankonar123. (2019, May 7). ANIRBANKONAR123/corrosiondetector: Corrosion detection
from images. GitHub. Retrieved March 6, 2022, from
https://github.com/anirbankonar123/CorrosionDetector

Bzager. (2017, August 24). Bzager/corrosion-detection: Image processing for automated detection
of Steel Corrosion. GitHub. Retrieved March 6, 2022, from
https://github.com/bzager/corrosion-detection

Galli, K., 2019. How to Program a GUI Application (with Python Tkinter)!. [video] Available at:
<https://www.youtube.com/watch?v=D8-snVfekto> [Accessed 13 March 2022].

Generic. “RedTagCanada OV7670 VGA CMOS Camera Image Sensor Module for Arduino
Supports VGA CIF 640X480 Compatible I2C Interface.” Amazon.ca: Electronics, 2021,
https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?
ie=UTF8&psc=1.

http://te.unib.ac.id/lecturer/indraagustian/2014/05/3dof-inverse-kinematic-for-armleg-of-robot-use-arduino/
http://te.unib.ac.id/lecturer/indraagustian/2014/05/3dof-inverse-kinematic-for-armleg-of-robot-use-arduino/
https://www.amazon.ca/Arducam-Megapixels-MT9D111-Camera-Adapter/dp/B013O8QB8O
https://www.amazon.ca/Arducam-Megapixels-MT9D111-Camera-Adapter/dp/B013O8QB8O
https://www.uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-arduino-uno-mega2560-board.html
https://www.uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-arduino-uno-mega2560-board.html
https://duino4projects.com/autonomous-paintball-sentry-gun-using-arduino/
https://www.arduino.cc/reference/en/libraries/servo/
https://github.com/anirbankonar123/CorrosionDetector
https://github.com/bzager/corrosion-detection
https://www.youtube.com/watch?v=D8-snVfekto
https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1
https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1

GHEDIRI, A. (2017, June). Design and Construction of Robotic Palletizer. Faculty of Sciences and
Applied Sciences, Department of Electrical Engineering. Retrieved March 3, 2022, from
Design and Construction of RoboticPalletizer

Gperco. (2013, December 20). Robot arm: Reaching for the stars. Robot Arm: Reaching for the
Stars. Retrieved March 4, 2022, from
http://www.gperco.com/2013/12/robot-arm-reaching-for-stars.html

HiLetgo. “Amazon.com : 3pcs HC-SR501 PIR Infrared Sensor Human Body ...” Amazon, 2018,

https://www.amazon.com/HC-SR501-Infrared-Sensor-Arduino-Raspberry/dp/B085M7WS
MY.

Konar, A. (2019, August 16). Using tensorflow object detection API for corrosion detection and
localization. FloydHub Blog. Retrieved February 11, 2022, from
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-a
pi/

Kumar, V. (n.d.). Robot geometry and Kinematics - University of Pennsylvania. Robot Geometry
and Kinematics. Retrieved February 10, 2022, from
https://www.seas.upenn.edu/~meam520/notes02/IntroRobotKinematics5.pdf

K&RProject. (2018, January 22). Arduino with PIR motion sensor, led and Buzzer (code). Arduino
with PIR motion Sensor, LED and buzzer (Code). Retrieved March 1, 2022, from
https://kandrproject.blogspot.com/2018/01/arduino-with-pir-motion-sensor-led-and.html

Lazzari, E. (2022). Downloading Python. BeginnersGuide/Download - Python Wiki. Retrieved
March 5, 2022, from
https://wiki.python.org/moin/BeginnersGuide/Download

Luuk, I. (2021). Simplified! how to use OV7670 camera with Arduino. SIMPLIFIED! How to Use
OV7670 Camera with Arduino. - Circuit Journal. Retrieved February 7, 2022, from
https://circuitjournal.com/arduino-OV7670-to-pc

Mon, S. (2017, July 11). Arduino using inverse kinematics (ik) - youtube. Youtube. Retrieved March
4, 2022, from
https://www.youtube.com/watch?v=Y8ueTjqCcAg

Naing, W. W., Aung, K. Z., & Thike, A. (2018). Position control of 3-DOF articulated robot arm
using PID. International Journal of Science and Engineering Applications. Retrieved
February 12, 2022, from
https://ijsea.com/archive/volume7/issue9/IJSEA07091001.pdf

http://bib.univ-oeb.dz:8080/jspui/bitstream/123456789/8112/1/thesis.pdf
http://www.gperco.com/2013/12/robot-arm-reaching-for-stars.html
https://www.amazon.com/HC-SR501-Infrared-Sensor-Arduino-Raspberry/dp/B085M7WSMY
https://www.amazon.com/HC-SR501-Infrared-Sensor-Arduino-Raspberry/dp/B085M7WSMY
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://www.seas.upenn.edu/~meam520/notes02/IntroRobotKinematics5.pdf
https://kandrproject.blogspot.com/2018/01/arduino-with-pir-motion-sensor-led-and.html
https://wiki.python.org/moin/BeginnersGuide/Download
https://circuitjournal.com/arduino-OV7670-to-pc
https://www.youtube.com/watch?v=Y8ueTjqCcAg
https://ijsea.com/archive/volume7/issue9/IJSEA07091001.pdf

Ohms Law Calculator. (2022). Voltage divider calculator. Ohm's Law Calculator. Retrieved March
1, 2022, from
https://ohmslawcalculator.com/voltage-divider-calculator

Onyehn. (2018, September 27). Onyehn ir pyroelectric infrared PIR motion sensor detector
modules(pack of 2pcs), motion detectors - Amazon Canada. , Motion Detectors - Amazon
Canada. Retrieved February 12, 2022, from
https://www.amazon.ca/Onyehn-Pyroelectric-Infrared-Detector-Modules/dp/B07GJDJV63/
ref=sr_1_11?crid=3A3YR2R3MK01B&keywords=arduino%2Bpir%2Bsensor&qid=16446
89563&sprefix=arduino%2Bpir%2Bsensor%2Caps%2C71&sr=8-11#customerReviews

Pagurek, D. (2017, March 12). Simple Inverse Kinematics. Simple Inverse Kinematics - Dave
Pagurek. Retrieved February 11, 2022, from
https://www.davepagurek.com/blog/inverse-kinematics/

The Arduino Team. (2022). Downloads. Arduino. Retrieved February 7, 2022, from
https://www.arduino.cc/en/software

Waveshare-Module. (2014, September 24). WaveShare OV9655 Camera Board CMOS SXGA 1.3
megapixel camerachip module development kit. Amazon.ca: Electronics. Retrieved
February 12, 2022, from
https://www.amazon.ca/OV9655-Camera-Board-CameraChip-Development/dp/B00KM6W
YTM

Xingyheng. (2019, June 4). Xingyheng 5Pcs HC-SR505 Micro Body Sensing Module pir motion
detector switch module high power high efficiency digital measurement for electronic
practice DIY, motion detectors - Amazon Canada. , Motion Detectors - Amazon Canada.
Retrieved February 12, 2022, from
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7
GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=16446
89638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwd
GVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNj
Q3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWj
FXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZ
kb05vdExvZ0NsaWNrPXRydWU

https://ohmslawcalculator.com/voltage-divider-calculator
https://www.amazon.ca/Onyehn-Pyroelectric-Infrared-Detector-Modules/dp/B07GJDJV63/ref=sr_1_11?crid=3A3YR2R3MK01B&keywords=arduino%2Bpir%2Bsensor&qid=1644689563&sprefix=arduino%2Bpir%2Bsensor%2Caps%2C71&sr=8-11#customerReviews
https://www.amazon.ca/Onyehn-Pyroelectric-Infrared-Detector-Modules/dp/B07GJDJV63/ref=sr_1_11?crid=3A3YR2R3MK01B&keywords=arduino%2Bpir%2Bsensor&qid=1644689563&sprefix=arduino%2Bpir%2Bsensor%2Caps%2C71&sr=8-11#customerReviews
https://www.amazon.ca/Onyehn-Pyroelectric-Infrared-Detector-Modules/dp/B07GJDJV63/ref=sr_1_11?crid=3A3YR2R3MK01B&keywords=arduino%2Bpir%2Bsensor&qid=1644689563&sprefix=arduino%2Bpir%2Bsensor%2Caps%2C71&sr=8-11#customerReviews
https://www.davepagurek.com/blog/inverse-kinematics/
https://www.arduino.cc/en/software
https://www.amazon.ca/OV9655-Camera-Board-CameraChip-Development/dp/B00KM6WYTM
https://www.amazon.ca/OV9655-Camera-Board-CameraChip-Development/dp/B00KM6WYTM
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU
https://www.amazon.ca/XLX-HC-SR505-Efficiency-Measurement-Electronic/dp/B07QY7GPWT/ref=sr_1_3_sspa?crid=1SK6R56RF0O7E&keywords=pir%2Barduino&qid=1644689638&sprefix=pir%2Barduino%2Caps%2C62&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExQzU0NURZR0MxV0s1JmVuY3J5cHRlZElkPUExMDAzNjQ3MlJROFhSRVFQUTRZWSZlbmNyeXB0ZWRBZElkPUEwNTA2OTI4MjlWM0pBWjFXRU9XWSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU

Appendices
Appendix I: Design Files

Document Name Document Location and URL Issuance Data

Corrosion Detection Folder https://github.com/bzager/corros
ion-detection

This is the folder that the
original corrosion detection AI
was found from.

Table 5. Referenced Documents

MakerRepo link: https://makerepo.com/Becap/1113.gng1103c1group-3armageddon

https://github.com/bzager/corrosion-detection
https://github.com/bzager/corrosion-detection
https://makerepo.com/Becap/1113.gng1103c1group-3armageddon

