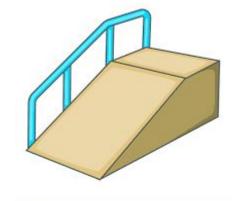
Project Armadillo

A Safe, Portable Ramp


Tharaka, Kris, Derek, Jonah, Roy, Seyed

Introduction

There are thousands of people with disabilities who are unable to pursue their dreams due to their limitations.

Our project is to ensure that everyone has a source of accessibility and an equal opportunity to do what they love regardless of their struggle.

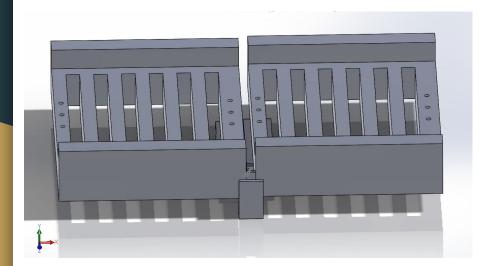
Customer Needs

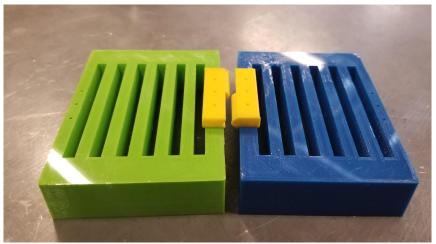
Safety

- Ensuring safety by adding a hand rails on both sides of the ramp
- Needs to able safety handle a load 500lbs
- Weather resistant
- Tracktion

Portability

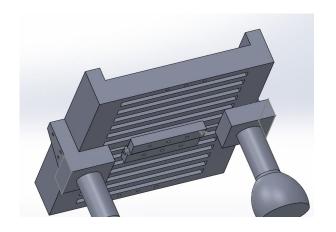
- Light weight
- Components of the ramp should to be detachable
- Our ramp also folds
 - Ensure quick assembly times

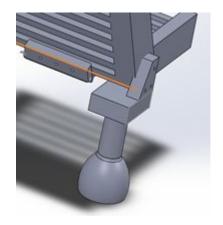

Overall allows ease of transport and storage

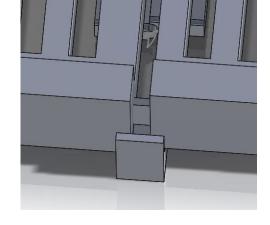

Define

Problem Statement:

Our client needs a portable, cheap and secure ramp for people who have various forms of disabilities as there are not accessible ways for them to go up and down stairs in various types of buildings / homes.

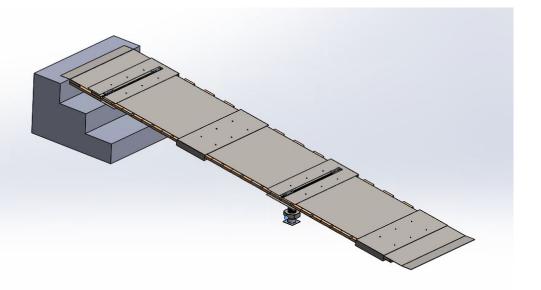

Ideate - Prototype 1

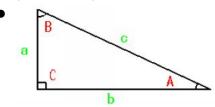




Testing Communication

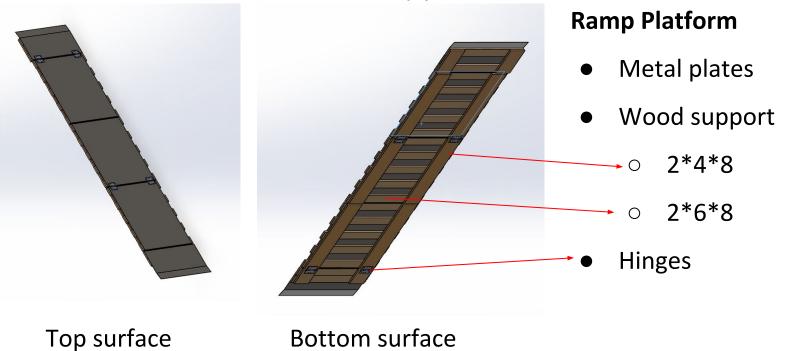
Ideate - Prototype 2




Adjustable Legs, Support System

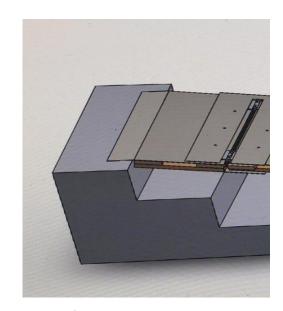
Locking Mechanism

Ideate - Final Prototype 3

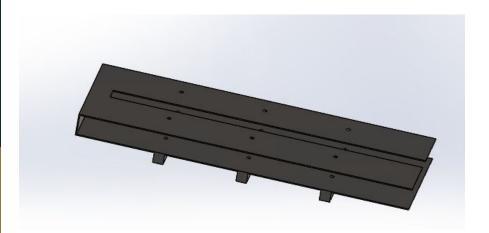

Ramp on 3 steps standard stairs

A=8.2 degree a=54 cm, b= 376cm, c=380cm

• Testing: tried with more adjustable legs.

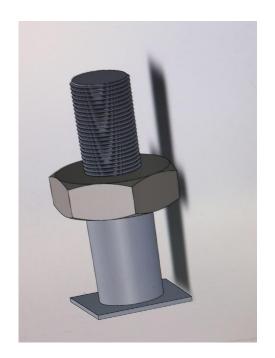

Ideate - Final Prototype 3

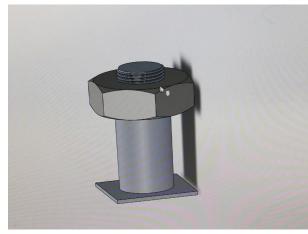
Assembly / Disassembly



80cm x 95cm x 20cm

Last step


Ideate - Final Prototype 3



Locking Mechanism

- C-Shape
- Slot
- Beam (weld)
- Size
 - o width 80 cm
 - Length 30 cm

Ideate - Final Prototype 3

Adjustable Leg

• 3 sizes

3 Parts

- Base
- Nut
- Shaft

Additional Features

- Handrails
 - 2 sizes
- Alarm Button
 - Discrete

Target Specifications

Metric	Marginal	Ideal	Prototype 3
Cost of ramp (CAD)	\$400	\$100	\$176
Width of the ramp (cm)	72cm	75cm	80cm
Angle of ramp when at 3 steps (°)	9.5°	4.8°	8°
Weight supported (Newtons)	2250N	3340N	2500N
Length of time to set up/take down (Minutes)	30 min	10 min	(unknown)

Decision matrix & chosen solution

	Weight	Foldable ramp	Rolled ramp
Portability	3	Quite portable	Quite portable
Cost	4	Inexpensive (for a ramp)	Quite expensive
Mass of Ramp	2	Fairly light for a ramp	Heavy
Ease of setup	3	Somewhat challenging	Incredibly easy
Safety	5	Very safe	Very safe
Reliability	4	Fewer breaking points	Lots of moving parts
Total		10	3

Benchmarking

Advantage:

- Portability
 - Size of the ramp / rolling mechanism
 - Ease of transport through carrying handle
- Quick assembly

Disadvantage:

Very heavy

Feasibility Study

Technical:

- Solidworks
- Physical Prototypes

Economic:

- Prioritization of material needed
- 'Dumpster Diving'

Legal:

- Inspiration issues
- Engineering standards

Operational:

- Flexible time schedule
- Financial Constraints

Scheduling:

- 6 hours outside of class
- Someone responsible for each deliverable

Economics

Net Present value

- Total project value cash flow in Today's market
- Accepted value for project was met

Net Future Value

- Total project value cash flow in a future market as economy has inflation
- Aiming at lower product cost

Total initial cost	\$ 672,200	Accepted
Total fixed cost	\$1,459,200/year	Accepted
Total variable cost	\$940,000/year	Accepted
Price for consumer	\$700/ramp	Accepted
Profit	7,500,000	

Business Model Canvas

Key Partners

- Ramp
 manufacturers
- Event organizers
- Homeowners
- Businesses
- workplaces

Key Activities

- Product development
- Distribution of ramps to customers

Key Resources

- Hosts of events
- Skilled employees

Value Proposition

- Event organizers
- communities can host a diverse group of attendees
- Individuals can have better access to their homes or workplaces

Customer

Relationships

- Phone-in support
- Social media
- Relationships between representatives and customers

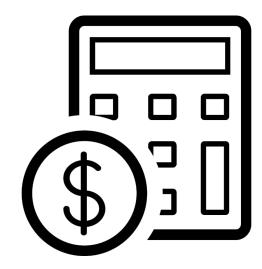
Channels

- Website
- Trained individuals
- User manual

Customer Segments

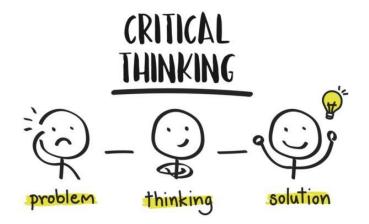
- Community organizations: aid in distribution and provide volunteers
- Individuals: contact company for installation support if injured

Cost Structure


- Manufacturing ramp (variable)
- Maintenance (variable)
- Salary for employees (fixed)

Revenue Streams

- Donations
- Grants from the government
- Rental charge


Future Work

- Upgrade and enhance the design
- Applying for patent
- Establishing partnership
- Re-evaluating costs
- Advertising & outreach

Lessons Learned

- 1. Teamwork and communication
- 2. Critical thinking
- 3. Problem solving
- 4. Budget managements
- 5. Adaptivity to resources

Thank you for listening!

