UNIVERSITY OF OTTAWA Faculty of Engineering

GNG1103 Design Project – Deliverable G

Group C2Adrianna Chouliotis300225514Hunter Fleming300213232Minjung Gong300080238Toby Thai300201869

Submitted to: Professor David Knox

Submitted on: March 13th, 2022

Wrike Snapshot:https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=8SmYo6oO uhHCyp5uQ66FdSaGgsV8qylD%7CIE2DSNZVHA2DELSTGIYA

TABLE OF CONTENTS

LIST OF TABLES	. 2
LIST OF FIGURES	. 2
UPDATED CODE	.3
TEST PLAN RESULTS	.6
MAXIMUM REACH CALCULATIONS	.6
X-REACH:	.6
UPDATED BILL OF MATERIALS	.7
UPDATED DESIGN SPECIFICATIONS	. 8
TEST PLAN UPDATE	. 8
RISK AND CONTINGENCY PLAN	.9

LIST OF TABLES

Table 1. Test Plan for Prototype II	.6
Table 2. Updated Bill of Materials	
Table 3. Updated Target Design Specifications	
Table 4. Test Plan for Prototype III	
Table 5. Risk and Contingency Plan for Prototype III	

LIST OF FIGURES

Figure 1. Arduino Code	5
Figure 2. Schematic of Kinematics Problem	6

UPDATED CODE

```
1 #include <Servo.h>
2
3 Servo motor1;
4 Servo motor2;
5 Servo motor3;
6
7
    // length of each link (arm)
8 float L1;
9 float L2:
10 float L3;
11
12
13 float pi = 3.14159265359;
14
15
16 void setup() {
   motor1.attach(3);
motor2.attach(5);
17
18
    motor3.attach(6);
19
   Serial.begin(9600);
motor1.write(0);
20
21
22
    motor2.write(0);
     motor3.write(0);
23
24 Serial.println("Enter the length of the first arm L1");
25
   while(Serial.available()==0){}
    L1=Serial.parseFloat();
26
    Serial.print("L1 is
27
                          ");
28
   Serial.println(L1);
29
    Serial.println("Enter the length of the second arm L2");
30
31
    while(Serial.available()==0){}
32
    L2=Serial.parseFloat();
33
    Serial.print("L2 is ");
34
    Serial.println(L2);
35
36
    Serial.println("Enter the length of the third arm L3");
37
    while(Serial.available()==0){}
    L3=Serial.parseFloat();
38
39
    Serial.print("L3 is
                          ');
40
    Serial.println(L3);
41
42 Serial.println("Enter Number 1 for ForwardKinematics");
43 Serial.println("Enter Number 0 for inverseKinematics");
                                                             }
44
45 void loop() {
46
47
    if (Serial.available()) {
48
49
       char choice = Serial.read();
50
       if (choice == '1'){
51
52
     motor1.write(0);
53
     motor2.write(0);
     motor3.write(0);
54
55
       ForwardKinematics();
56
    }
57
58 else if(choice == '0')
59
60 {
     motor1.write(0);
61
62
     motor2.write(0);
63
     motor3.write(0);
64 inverseKinematics();
```

```
65
       }
 66
 67
 68
       }
 69
       }
 70
 71
 72
      void ForwardKinematics(){
 73
 74 float angle1 ;
 75 float angle2;
 76 float angle3;
 77 float angleTotal;
 78
 79 float radAngle1;
 80 float radAngle2;
 81 float radAngle3;
 82 float radAngleTotal;
 83
 84
 85 float x;
 86 float y;
87 float x1;
 88 float x2;
 89 float y1;
 90 float y2;
 91
        Serial.println("Enter angle1 ");
        while(Serial.available()==0){}
 92
 93
        angle1=Serial.parseFloat();
        Serial.print("angle1 = ");
 94
 95
        Serial.println(angle1);
 96
 97
       Serial.println("Enter angle2 ");
 98
       while(Serial.available()==0){}
99
       angle2=Serial.parseFloat();
100
       Serial.print("angle2 = "); Serial.println(angle2);
101
102
       Serial.println("Enter angle3 ");
       while(Serial.available()==0){}
103
104
       angle3=Serial.parseFloat();
105
       Serial.print("angle3 = "); Serial.println(angle3);
106
107
       radAngle1 = (angle1*pi)/180;
       radAngle2 = (angle2*pi)/180;
radAngle3 = (angle3*pi)/180;
108
109
110
       radAngleTotal = (angleTotal*pi)/180;
111
112
       motor1.write(angle1);
113
       motor2.write(angle2);
114
       motor3.write(angle3);
115
       x = L1 * cos(radAngle1) + L2 * cos(radAngle1 + radAngle2) + y = L1 * sin(radAngle1) + L2 * sin (radAngle1 + radAngle2)+
116
117
       angleTotal = angle1 + angle2 + angle3;
118
119
         delay(1000);
120
121
      Serial.print("x is "); Serial.println(x);
Serial.print("y is = "); Serial.println(y);
Serial.print("Total angle is "); Serial.println(angleTotal);
Serial.print("anglel "); Serial.println(angle1);
122
123
124
125
     Serial.print("angle2 "); Serial.println(angle2);
Serial.print("angle3 "); Serial.println(angle3);
126
127
128 Serial.println("Enter Number 1 for ForwardKinematics");
```

```
129 Serial.println("Enter Number 0 for inverseKinematics");
130
     }
131
     void inverseKinematics(){
         // angles between links of robot arm
132
133 float angle1 ;
134 float angle2;
135 float angle3;
136 float angleTotal;
137
138 float radAngle1;
139 float radAngle2;
140 float radAngle3;
141 float radAngleTotal;
142
143 // to compute end effector
144 float x;
145 float y;
146 float x1;
147 float x2;
148 float y1;
149 float y2;
150 Serial.println("Enter the value x ");
151
          while(Serial.available()==0){}
152
          x=Serial.parseFloat();
153
          Serial.print("x is "); Serial.println(x);
154
          Serial.println("Enter the value y ");
155
156
          while(Serial.available()==0){}
157
          y=Serial.parseFloat();
          Serial.print("y is "); Serial.println(y);
158
159
          Serial.println("Enter the Total Angle");
160
161
           while(Serial.available()==0){}
           angleTotal=Serial.parseFloat();
162
163
           Serial.print("total angle is
                                           ");Serial.println(angleTo
164
165
       radAngleTotal = (angleTotal*pi)/180;
166
       x2=x-L3*cos(radAngleTotal);
       y2=y-L3*sin(radAngleTotal);
167
       radAngle2 = acos((sq(x2) + sq(y2) - sq(L1) - sq(L2)) / (2*L1)
168
       radAngle1= acos(((L1 + L2 * cos(radAngle2))*x2+(L2 * y2 * s
169
170
171
           angle1= (radAngle1*180)/pi;
172
           angle2= (radAngle2*180)/pi;
           angle3= angleTotal-angle1-angle2;
173
174
            delay(1000);
175
176
           motor1.write(angle1);
177
           motor2.write(angle2);
178
           motor3.write(angle3);
179
           x1 = L1 * cos(radAngle1) ;
180
           y1 = L1 * sin(radAngle1) ;
181
182
      Serial.print("angle1 is "); Serial.println(angle1);
      Serial.print("angle2 is "); Serial.println(angle2);
Serial.print("angle3 is "); Serial.println(angle3);
183
184
185
186
187 Serial.println("Enter Number 1 for ForwardKinematics");
188 Serial.println("Enter Number 0 for inverseKinematics");
189 }
```

Figure 1. Arduino Code

TEST PLAN RESULTS

	Table 1. Test Plan for Prototype II					
Test	Test Objective	Description of the Test Objective	Planned Start Date and Estimated Duration	Qualitative Results	Quantitative Results	
1	To test that the assembly of the mechanical arm.	Robotic arm can move flexibly within a one- meter range can bear the weight of the requested object.	March 7 th , 2022 Test Duration: 5 minutes	The robot arm is not large enough for the original intended range; therefore a range was estimated through mathematical analysis based on maximum measured angle.	Maximum $\Theta_1 = 90^{\circ}$ Maximum $\Theta_2 = 150^{\circ}$	
2	To test the code.	A screenshot/recording will be taken and put in the Deliverable.	March 7 th , 2022 Test Duration: 5 minutes	The code has been debugged and ran to give a result over simulations.	The code gives a precise answer matching inverse kinematics solvers.	
3	To test the assembly of the mechanical arm with the code system.	The robotic arm and the code system will be connected to test if the robotic arm can operate as required by the code system.	March 7 th , 2022 Test Duration: 5 minutes	Results were not taken due to unavailability of arm + materials needed (Arduino, motors, etc)	N/A	

MAXIMUM REACH CALCULATIONS

(Based off Measurements)

<u>X-Reach:</u>

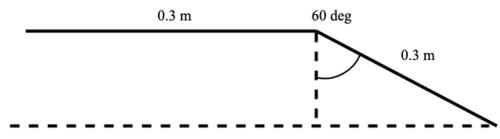


Figure 2. Schematic of Kinematics Problem

$$\sin(60) = \frac{x}{0.3 m}$$
$$x = 0.26 m$$

0.3 m + 0.26 m = 0.56 m

X/Z-reach not needed due to 180 degrees turning.

UPDATED BILL OF MATERIALS

Table 2. Updated Bill of Materials					
Name	Description	Dimensions	Quantity	Unit Cost	Total Cost
	Software	1	T	1	
Python	End effector needs open-source Python to work. Python can be download for free from the Python site and is useful and easy for coding.	-	1	\$0	\$0
	Hardware	1			
Laptop	To code, prototype, and test with Python, we need a laptop. But it is free because everyone on the team has their own laptop already.	-	1	\$0	\$0
Arduino Uno	The Arduino uno is an open-source microcontroller board. It is required to operate the robot arm using Python.	-	1	\$0.00	\$0.00
ABS Filament	ABS filament is 3d printer plastic. It is easy to process, has high impact resistance and good heat resistance. It is often used as a substitute for metal in industrial products such as automobile parts and electronic device parts because of its very high strength.	-	1	\$0	\$0
Screw	w Screws are used to connect the arm to the end effector.		3	\$0.00	\$0.00
Wire Set	Wire Set Wires are used to connect the Arduino to the end effector, supply and operate power.		120 pcs	\$0.00	\$0.00
Velcro Industrial Roll	elcro ustrial Velcro band is used in this project to strap the items together by attaching them to the End effector. This is suitable for strapping items as it has a good adhesion if		1	\$20.99	\$20.99
Servo Motor	Servo motor is a motor that can move exactly as much as inputted by the control and measurement circuit when movement is specified. This is where the movement of the end effector helps.	13.69×9.8×3. 61 cm 50g	4	\$0.00	\$0.00
			TAL	\$20.9	
		TAX (13%)	\$2.73	
		TOTAL C	OST	\$23.72	2

UPDATED DESIGN SPECIFICATIONS

	Table 3. Updated Target Design Specifications						
	Design Specifications	Relation	Value	<u>Units</u>	Verification	<u>Prototype</u> <u>1: Specs</u> <u>Met?</u>	Prototype 2: Specs Met?
		Fu	nctional R	lequiremen	its		
1	3D Printed	-	Yes	>	Design	N/A	N/A
2	Coded off Python	-	Yes	I	Design	Yes	Yes
3	Open Source	-	Yes	-	Uploading	Yes	Yes
4	Ground Mounted	>	Yes	-	Design	Yes	Yes
			Const	raints			
1	Cost per Arm	\leq	50	\$ CAD	Cost Calculations	Yes	Yes
2	Temperature to Withstand	Range	-30 - 60	٥C	Testing/Analysis	N/A	N/A
3	Degrees of Freedom	=	3	-	Design	Yes	Yes
4	Weight	<1	9	Kg	Weighing	Yes	Yes
5	Size (L x H x W)	VI	1	m^2	Calculation	Yes	Yes
6	Payload	и	1	Kg	Testing	N/A	N/A
7	Pressure to Withstand	\leq	8	Bar	Testing/Analysis	N/A	N/A
8	Range of Motion	\geq	±0.5	m	Testing/Calculations	N/A	Yes
9	Time to Paint 4 ft ²	≶	4	Hours	Testing	N/A	N/A
	Non-Functional Requirements						
1	Ease of Use	<	6	Hours	Training Testing	Yes	Yes
2	Pinch Points	2	4	-	Design	Yes	Yes
3	UV/Corrosion Resistance	-	Yes	-	Testing	N/A	N/A
4	Life Span of the Product	2	1	Year	Use	N/A	N/A

TEST PLAN UPDATE

	Table 4. Test Plan for Prototype III					
Test Test Objective		Description of the Test Objective	Planned Start Date and Estimated Duration			
1	To test that the assembly of the mechanical arm.	 The 3 dots of freedom will allow the arm to move flexibly while having a blaster/painter strapped into the end effector within a one-meter range. A screenshot/recording will be taken and put in the Deliverable. 	March 21st, 2022 Test Duration: 15 minutes			
2	To test the code. > A screenshot/recording will be taken and put in the Deliverable.		March 21st, 2022 Test Duration: 15 minutes			
3	To test the assembly of the mechanical arm with the code system.	The robotic arm and the code system will be connected to test if the robotic arm can operate as required by the code system.	March 21st, 2022 Test Duration: 15 minutes			

Table 5. Risk and Contingency Plan for Prototype III					
Risk	Risk Management	Contingency Plan			
The maximum range is not like what we calculated	Different calculations done by different members will be gathered to minimize the error.	 If the difference between the realistic range and the calculated one is negligible which is still in the estimated range, we can assume the value to be accurate. Otherwise, the group will overestimate the assumed value, if possible, to provide for a margin of error. 			
Operational/ Technical Failure	The testing results done in the last prototype will reduce the probability of operational failure in this prototype phase.	If the problem cannot be resolved, then the product will not include that aspect.			
Scope Creep	 We will seek regular customer/client feedback as well as the project manager's and TAs' opinions to minimize the probability of this risk. 	 The requirement is expected to be integrated successfully in the final product. If the solution is not possible, the final product will not include the aspect. 			
Performance Risk	Tests will be done on this prototype so if there is any performance problem, it will be determined before the final presentation	 The team will do some extensive research to define and resolve the problems. If the team cannot resolve the problem, we will ask the TAs and/or project manager for assistance. If it still does not help resolve the problem, the final product will not include the aspect. 			

RISK AND CONTINGENCY PLAN