
## FINAL PRODUCT

#### **PROBLEM ANALYSIS**

|                                                                                                              |                                                                                                                                                                                                                                                                                                               |                                |                                                                                                                        |            |            |                                                                                                      |                                        |                 |                         |            | _         |          |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|------------|------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-------------------------|------------|-----------|----------|
|                                                                                                              |                                                                                                                                                                                                                                                                                                               | PROBLEM STATEMENT              |                                                                                                                        |            |            |                                                                                                      |                                        |                 |                         |            |           |          |
|                                                                                                              | A new walker design is required to facilitate the need for an<br>inexpensive, reliable and simple way of engaging a one-handed<br>braking system on a walker; while also maintaining a<br>lightweight, transportable, and user-friendly design that still<br>maintains all the walker previous functionality. |                                |                                                                                                                        |            |            |                                                                                                      |                                        |                 |                         |            |           |          |
|                                                                                                              | DESIGN CRI                                                                                                                                                                                                                                                                                                    | TERIA - CUSTOME                | RS' NEEDS                                                                                                              |            | 1          |                                                                                                      |                                        |                 |                         |            |           |          |
| 1.0                                                                                                          | erpreted Needs                                                                                                                                                                                                                                                                                                | Design Criteri                 |                                                                                                                        | tarce*     |            |                                                                                                      | DI                                     |                 | ATRI                    | (<br>      | _         |          |
|                                                                                                              | riendly one-handed<br>braking                                                                                                                                                                                                                                                                                 | Force Senses                   |                                                                                                                        | 5          |            | Criteria<br>Concept I                                                                                | Parts<br>Applied                       | Ration & Life   | C                       | East of an | ****      | Rawreary |
|                                                                                                              | Watherproof                                                                                                                                                                                                                                                                                                   | Weserproof enclose             |                                                                                                                        |            |            | tigte to orgage the brake                                                                            | •                                      | •               |                         | -          | 2         |          |
|                                                                                                              | kes can be locked                                                                                                                                                                                                                                                                                             | E-Brake Button<br>Do not drill |                                                                                                                        | -          |            | dan applied by palling the<br>brains lower angaging                                                  |                                        | •               | •                       | •          |           | - 14     |
|                                                                                                              | Add failads braking Kaop manal input                                                                                                                                                                                                                                                                          |                                |                                                                                                                        |            |            | Concept 8                                                                                            |                                        |                 |                         |            |           |          |
| * logorary                                                                                                   | *Togermen.blail 1 = not proposed a long 1 1 4 4 1 23                                                                                                                                                                                                                                                          |                                |                                                                                                                        |            |            |                                                                                                      |                                        | 23              |                         |            |           |          |
| Realing System<br>Braking System<br>Force Required<br>(Marview)<br>Parting Brake<br>Battery Life<br>Cost (3) | BENCHS<br>None Series Cro<br>Weight actives<br>Non-Hard Series<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.<br>No.                                                                                                                                                                                        |                                | ED<br>Decrete<br>Second<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | N<br>6.    |            | Direct-to-con<br>Allows the 4<br>Advantage:<br>Direct inser-<br>experience.<br>Insertion<br>product. | iumer m<br>listribution<br>taction wit | n of the produc | s directly<br>er allows | for an esh | innced ca | atomar   |
|                                                                                                              |                                                                                                                                                                                                                                                                                                               | Criteria Sum<br>Force Applie   | mary                                                                                                                   | T SPE      | Metrics    |                                                                                                      | stificat                               | tion            |                         |            |           |          |
|                                                                                                              |                                                                                                                                                                                                                                                                                                               | Battery Capa                   | city                                                                                                                   | > 4500     |            | All                                                                                                  | day ba                                 | ttery           | _                       |            |           |          |
|                                                                                                              | -                                                                                                                                                                                                                                                                                                             | Cost                           |                                                                                                                        | < \$       |            |                                                                                                      | thin Bu                                | •               | _                       |            |           |          |
|                                                                                                              |                                                                                                                                                                                                                                                                                                               | Weight                         |                                                                                                                        | < 5 additi | ional Ibs. | Lightwei                                                                                             | ght and                                | i portable      |                         |            |           |          |

Witty Walkers set out to reinvent the traditional walker, allowing for one handed braking using limited grip strength.









Universal Mounting





#### PRODUCT DEVELOPMENT

|        | 501                                                                                                         | UTION AND C                                                                                                       |                                                                                                | ICEPT                                                                      |                  |
|--------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|
|        |                                                                                                             |                                                                                                                   |                                                                                                |                                                                            |                  |
|        | Concept 7 - Brakes w                                                                                        | ill be applied by pulling t                                                                                       | he brake lever which                                                                           | engages a rotary encoder.                                                  |                  |
|        |                                                                                                             | HOW                                                                                                               | ITWORKS                                                                                        |                                                                            |                  |
| PULLIN | IG THE HANDLE $\rightarrow$ RO                                                                              | ITATES DIAL ON ROTAR                                                                                              | $Y ENCODER \rightarrow TUP$                                                                    | INS THE MOTOR $\rightarrow$ APPLIE                                         | S BRAKES         |
|        | Step motor wil Pressing the "E-E Mode Selector                                                              | sses data & rotates a step<br>Il pull the brake cable acc<br>Brake" Button locks the<br>r Button - changes brakin | ording to how far th<br>brakes<br>g sensitivity                                                |                                                                            |                  |
|        | Concept 7 was chosen                                                                                        | n because it will give us t                                                                                       | ie most adaptability :                                                                         | nd ability for future growth                                               |                  |
| Butte  |                                                                                                             | Prototype 2<br>Prototype 2<br>Bastery<br>Stepper Motor                                                            |                                                                                                | DTYPE ITERATIONS<br>relation Uno<br>LED<br>LED<br>Mode Selection<br>Button | Ratery<br>Ecoder |
|        | A lesson that was le<br>different ways to app<br>For example, the : One tough decision<br>Changed from lith | proach problems<br>suggestion to use zip tie:<br>that was made was the<br>hium ion to standard por                | that there's never a<br>i instead of Velcro str<br>change of the battery<br>table USB chargers | wrong idea and that there i                                                |                  |

# **PROBLEM STATEMENT**

A new walker design is required to facilitate the need for an inexpensive, reliable and simple way of engaging a one-handed braking system on a walker; while also maintaining a lightweight, transportable, and user-friendly design that still maintains all the walker previous functionality.

### **DESIGN CRITERIA** – CUSTOMERS' NEEDS

| Interpreted Needs                    | Design Criteria      | Importance* |
|--------------------------------------|----------------------|-------------|
| User-friendly, one-handed<br>braking | Force Senses         | 5           |
| Weatherproof                         | Waterproof enclosure | 4           |
| Brakes can be locked                 | E-Brake Button       | 5           |
| Does not void warranty               | Do not drill         | 5           |
| Add failsafe braking                 | Keep manual input    | 5           |

\* Importance Scale: I = not important, and 5 = very important

#### **BENCHMARKING** – SIMPLIFIED

| Metrics                                         | Nova Series Cruiser | Dolomite Alpha      | EVA Electric Support Walker |
|-------------------------------------------------|---------------------|---------------------|-----------------------------|
| Braking System Weight activated                 |                     | Hand grip activated | Electronic 2-handed         |
| Force Required<br>(Newtons) No Hand Strength 0N |                     | < 5N                | > 5N                        |
| Parking Brake                                   | Yes                 | No                  | Yes                         |
| Battery Life                                    | N/a                 | N/a                 | 16 hours                    |
| <b>Cost (\$)</b> 219.99                         |                     | 1,179.99            | 3,160.00                    |

## **TARGET SPECIFICATIONS**

| Criteria Summary | Target Metrics      | Justification            |
|------------------|---------------------|--------------------------|
| Force Applied    | < 5 lbs.            | Easy brake application   |
| Battery Capacity | > 4500 mAh.         | All day battery          |
| Cost             | < \$100             | Within Budget            |
| Weight           | < 5 additional lbs. | Lightweight and portable |

### **DECISION MATRIX**

| Criteria                                                                                       | Force<br>Applied | Battery & Life | Cost | Ease of use | Weight | Summary |
|------------------------------------------------------------------------------------------------|------------------|----------------|------|-------------|--------|---------|
| <b>Concept I</b><br>Weight to engage the brake                                                 | 4                | 4              | 5    | 3           | 3      | 19      |
| <b>Concept 7</b><br>Brakes applied by pulling the<br>brake lever engaging<br>a rotary encoder. | 5                | 5              | 4    | 5           | 5      | 24      |
| <b>Concept 9</b><br>Brakes applied using<br>a potentiometer dial                               | 5                | 5              | 4    | 4           | 5      | 23      |

# **BUSINESS MODEL**

#### **Direct-to-consumer** model

• Allows the distribution of the product directly to our target audience

Advantages:

- Direct interaction with the customer allows for an enhanced customer experience.
- Interaction with the customer to optimize their experience with the product.

# ECONOMICS

 From the chosen business model, a detailed economic report, including a cost profile, a three-year income statement, as well as a break-even statement were developed.

| <b>Notable Values</b> | Metric        |  |  |
|-----------------------|---------------|--|--|
| Manufacturing Cost    | \$54.5I       |  |  |
| Sale Price            | \$100         |  |  |
| Break Even Quantity   | 15, 751 Units |  |  |

### Bill of Materials (BOM)

| Material                | # Needed (Per unit) | Part cost (\$) |
|-------------------------|---------------------|----------------|
| Arduino Uno             | I                   | 16.98          |
| Velcro Ties             | 4                   | 1.89           |
| Rotary Encoder (5 pack) | 2                   | 2.27           |
| Button                  | 5                   | 1.29           |
| Wire Red (5ft)          | I                   | 1.60           |
| Wire Black (5ft)        | I                   | 1.60           |
| Stepper Motor           | I                   | 10.78          |
| Enclosures              | I                   | 5.00           |
| Total                   | 16                  | 54.51          |

### SOLUTION AND CHOSEN CONCEPT

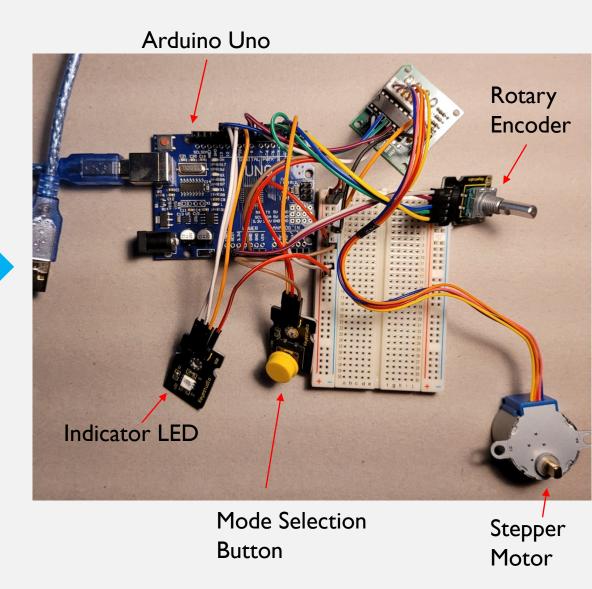
**Concept 7** - Brakes will be applied by pulling the brake lever which engages a rotary encoder.

#### HOW IT WORKS

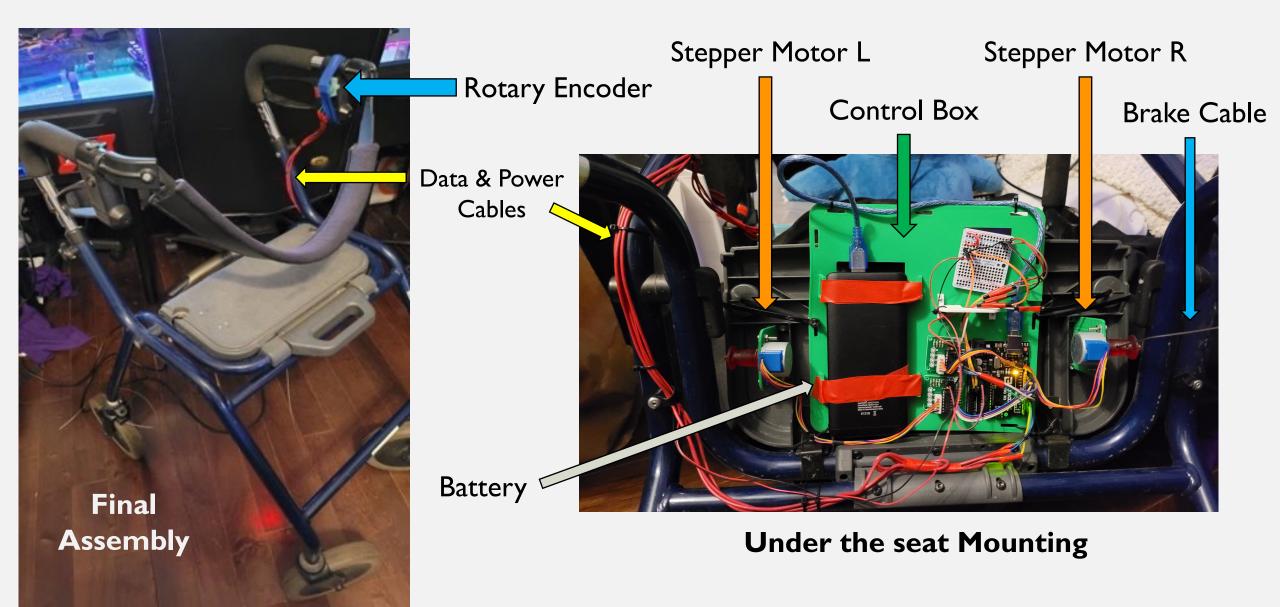
PULLING THE HANDLE  $\rightarrow$  ROTATES DIAL ON ROTARY ENCODER  $\rightarrow$  TURNS THE MOTOR  $\rightarrow$  APPLIES BRAKES


- Arduino processes data & rotates a step motor
- **Step motor** will pull the brake cable according to how far the handle is pulled
- Pressing the "E-Brake" Button locks the brakes
- Mode Selector Button changes braking sensitivity

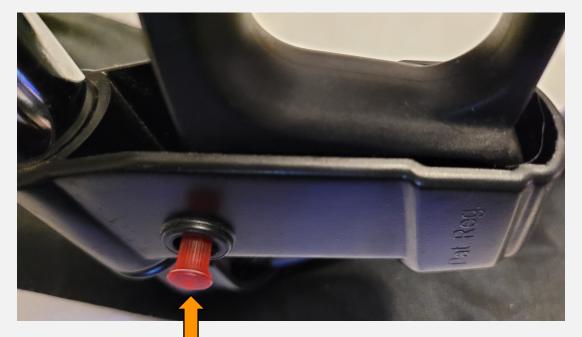
\*Concept 7 was chosen because it will give us the most adaptability and ability for future growth


### LESSONS LEARNED & TOUGH DECISIONS

- A lesson that was learned by the team was that there's never a wrong idea and that there are different ways to approach problems
  - For example, the suggestion to use zip ties instead of Velcro strips


- One tough decision that was made was the change of the battery type
  - Changed from lithium ion to standard portable USB chargers
  - The lithium-ion battery would have given our group more power to work with, but instead decided the ease of use for the client was more important

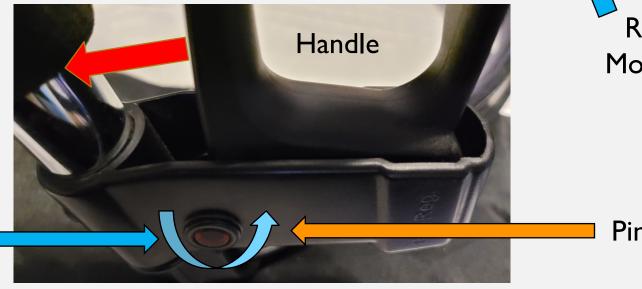



### **PROTOTYPE ITERATIONS**



#### FINAL PROTOTYPE

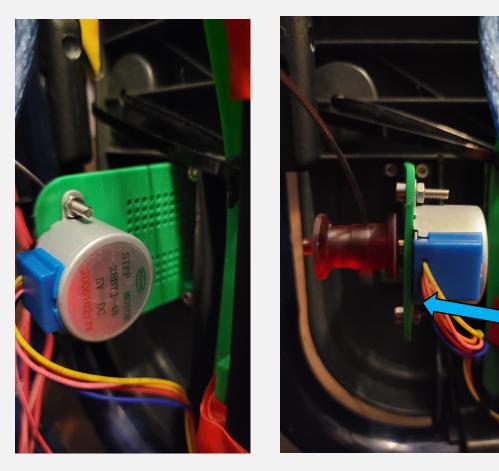



#### FINAL PROTOTYPE



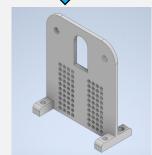


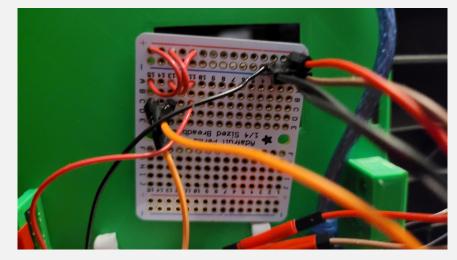
Rotary Encoder Friction Lock Pin


Allows handle to freely rotate turning the encoder



Rotary Encoder Mounted to side of handle


Pin In Place


#### FINAL PROTOTYPE



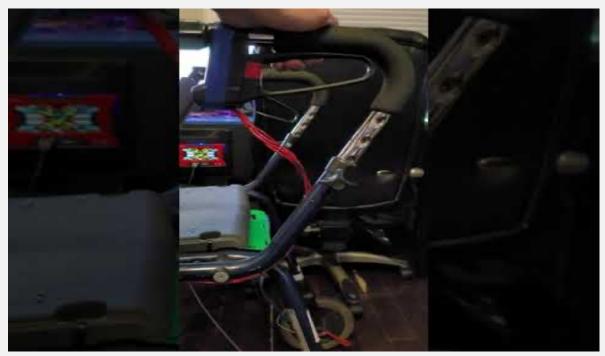

Motor that applies the brakes

3D Printed Motor Mount





#### **ProtoBoard Wiring**




### **Universal Mounting**

Rotary Motor Mount Encoder Case **Mounting Holes** Arduino Battery 0 **3D** Printed Proto Enclosure Board

## VIDEOS





Motor Braking system

Braking System