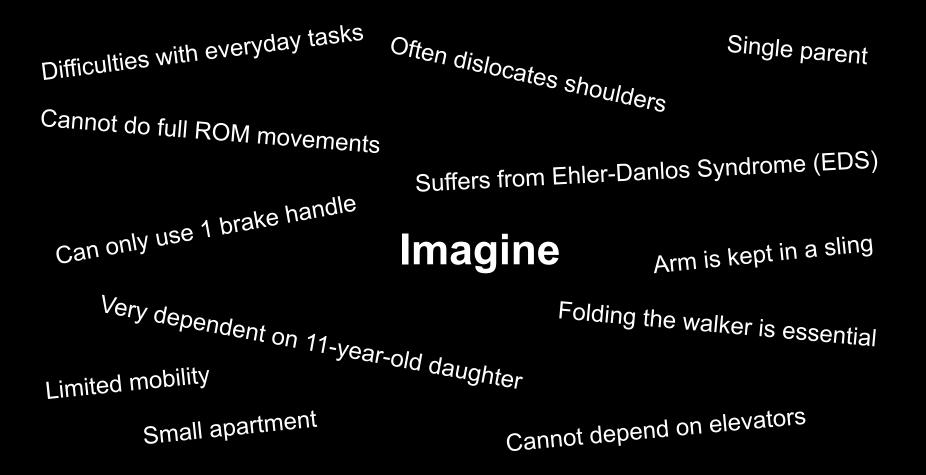


GNG2101 – Introduction to product development and management for engineers and computer scientists

Laboratory 6: Project Deliverable D Presentation

Team Z22: The Fast and Fabricating Five (FFF)


Faculté de génie | Faculty of Engineering uOttawa.ca

Agenda: Project Progress Presentation

- 1. Empathizing With Our Client
- 2. Customer Needs & Problem Statement
- 3. Takeaway of Client Meet 1
- 4. Significant Metrics
- 5. Product Benchmarking
- 6. Simplified Project Plan
- 7. Concepts Generated
- 8. Overview of Concept Design
- 9. Client 2 Feedback
- 10. The Purpose and Objective of Prototype 1
- 11. Demonstration
- 12. Lessons Learned
- 13. Info to be Gathered

Customer Needs & Problem Statement

The client requires a **maneuverable**, **lightweight**, **easily attachable** device that allows them to steer the walker **effectively** with one arm through narrow spaces and diverse terrain.

Client Needs Listed by Priority

- 1. Optimized for single-handed operation
- 2. Adaptable (use with either arm)
- 3. Maneuverable (easy to take on/off and fold)
- 4. Effortless applicable braking system
- 5. Durable (withstand different weather conditions)
- 6. Installable without permanent changes to walker

Takeaway: Client Meet 1

01 Convenient

Using the walker with 1 arm easily

Used in numerous circumstances

02

Flexible

03 Portable

Maintain the simplicity of transportation while carrying the walker

Design Priorities: Significant Metrics

01 Total Weight Less than 5 pounds

02 Length Equal to 55 cm

03 04 Less than 25 cm Less than 30 seconds

Product Benchmarking

Carex Folding Hemi Walker

Stander Let's Go Indoor Rollator (1 Handed)

S.T.I.N.G (single-handed steering component)

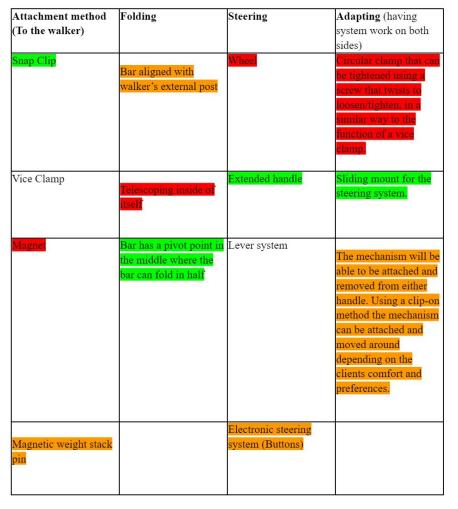
Simplified Project Plan

<u> </u>	Task		Time											Owner	
#			Month 1				Month 2				Month 3				
1	Deliverable A		x								2				All members
2	Deliverable B			x											Tyler
3	Design criteria			х											All members
4	Conceptual design & Project plan				х	х									All members
5	Prototype 1, Tests and Feedback						х	x							Jonathan
6	Prototype 2, Tests and Feedback									x	x				David
7	Prototype 3, Tests and Feedback											x			
8	Material of Design Day & Presentation												x		All members
9	Production of user manual													x	All members
10	Project closeout													x	All members
Project risks Delivery delay of important project components + Team conflicts + Low commitment															

X means one week

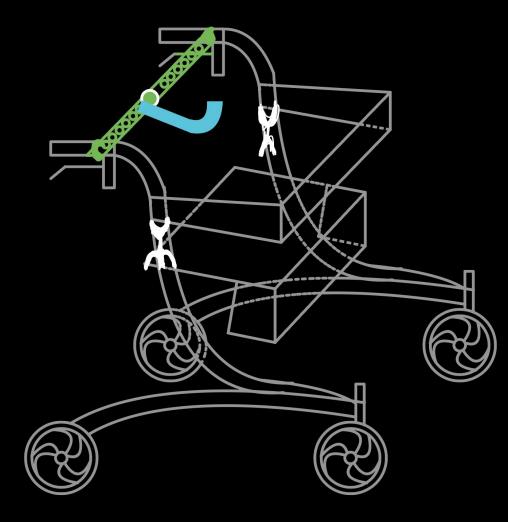
means milestones

- Client Meetings
- Design Day
- Final Presentation

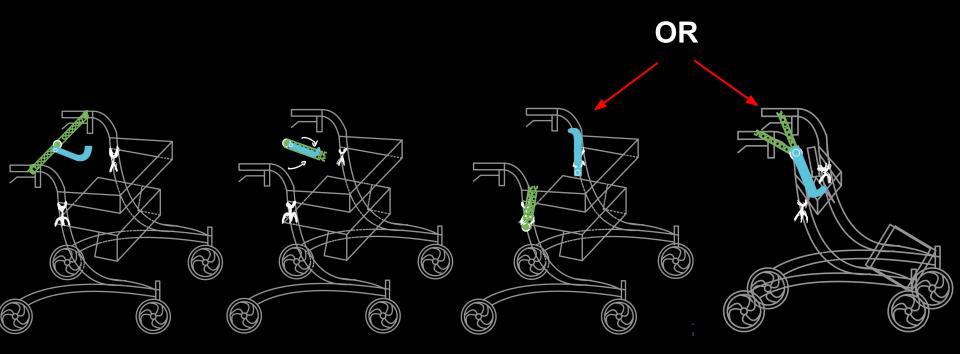


Template retrieved from GNG 2101 lecture 11 slides

Université d'Ottawa | University of Ottawa


Concept Generation

- 4 Subsystems that we chose:
 - Attachment Method
 - Folding Mechanism
 - Steering System
 - Adapting System



in UOttawa

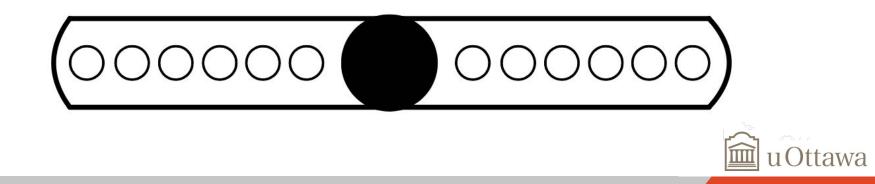
How does it work?

Complete Design

Client Meeting 2 Feedback

Mostly positive feedback

- Supports the idea of having a bendable bar


Main concern

- Fears that the plastic clamps may break overtime
- Where to buy snap clip materials to repair.
- Metal rusting

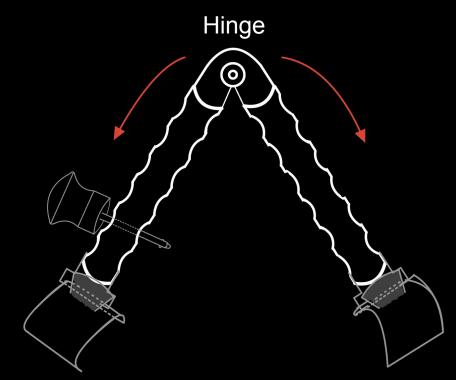
Objective of Prototype 1: The Main Bar Sub-system

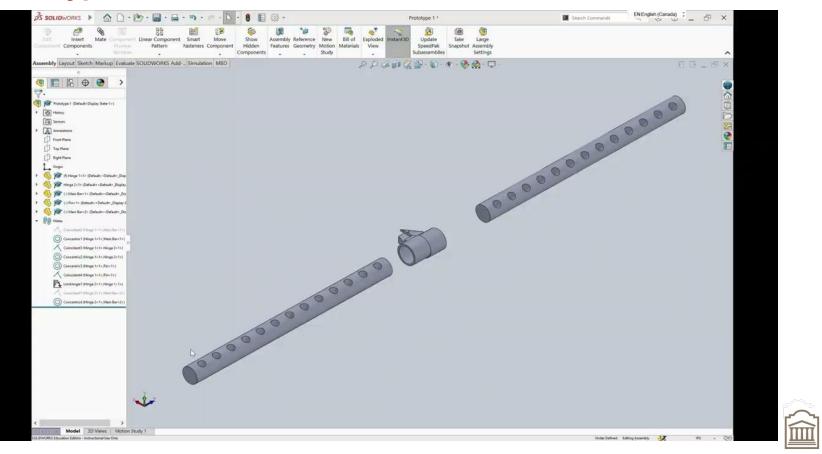
- Validate assumptions made about the final prototype
- Test and verify our assumptions
- Test whether our concept is viable
- Testing whether our folding mechanism would be feasible for this use case.

The Purpose

Determine:

- If a folding mechanism would be the right choice for the main bar. (As opposed to another method to allow our product to extra portable
- Whether the selected hinge would be the usable in our product or if we needed to find another way of folding our main bar.


How Does it Work?



How Does it Work?

Main Bar Bending

Prototype 1: Demonstration

What Was Learned From The First Prototype

- Our main bar idea is feasible
- The hinge design we chose would be able to work in this situation
- It allows for easy folding with a one way folding system

Information to be Gathered in Next Client Meet

- Verify that the requirements are still being effectively met
- Ensure that the alterations/modifications made are satisfactory
- Ensure materials are functional and will work for the client
- Clarifying exact dimensions
- Confirm any lingering questions

THE FAST AND FABRICATING FIVE We wheely care

Questions?