
Project Deliverable G:
Prototype II and Customer Feedback

Ani Preedom
Christy Lau

Paul Shedden
Claire Durand

GNG1103 Project Group 6
March 13, 2022

1

Abstract

On Halifax-class frigates, the Department of National Defence has a need for a robotic arm that
uses inverse kinematics to paint surfaces. The robot must also scan and clean areas to identify
and remove defects. To design the robot, a design process with several steps will be followed.
Thus far, conceptual designs have been generated using design criteria based on raw data
gathered from one of the users. At this stage in the design process, a second prototype has been
created and further test plans must be made based on client feedback to ensure that the project
can be completed in the allotted time. This report presents detailed prototyping progress, an
updated prototype test plan and bill of materials (BOM).

2

Table of Contents

1.0 Introduction 4

2.0 Detailed Design Drawing and Client Feedback 4

3.0 First Prototypes 8
3.1 Test Results 11

3.1.1 Open/Close End-Effector 11
3.1.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush 11
3.1.3 Solution to Two-Dimensional Inverse Kinematics Problem in Python 11
3.1.4 Usability of User Interface 13
3.1.5 Structural Strength of the End-Effector 14
3.1.6 Compressive Strength of the End-Effector 14

3.2 Analysis of Results 15
3.2.1 Open/Close End-Effector 15
3.2.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush 15
3.2.3 Solution to Three-Dimensional Inverse Kinematics Problem in Python 16
3.2.4 Usability of User Interface 16
3.2.5 Structural Strength of the End-Effector 16
3.2.6 Compressive Strength of the End-Effector 16

5.0 Prototyping Test Plan 16

6.0 Materials for Each Prototype 22

7.0 Risks and Contingency Plans 23

8.0 Conclusion 25

3

1.0 Introduction

The Department of National Defence expressed the need for a robotic arm with three degrees of
freedom to paint areas on Halifax-class frigates. A second prototype testing plan was created
based on the conceptual designs. Using this second test plan, prototypes were created and their
progress was recorded. Client feedback was analysed and a third prototype test plan was built off
of the original.

2.0 Detailed Design Drawing and Client Feedback

Prototype designs for each subsystem were created in deliverable F. These prototypes were
shown to the client and no feedback was given. Physical and more detailed prototypes were then
created based off of previous designs. Figure 1 shows a detailed design diagram of the three
stepper motors for controlling the degrees of freedom of the robotic arm, the ultrasonic sensor to
detect possible individuals or other objects in the area, and the kill switch to turn off the arm in
case of an emergency.

Figure 1. Detailed design diagram of Circuit for Motors and Sensors.

4

Figure 2 shows the full arm, with the attached 3D printed end effector prototype holding a pencil.

Figure 2. Robotic arm with a prototype end effector.

Figure 3 shows a close up of the full end effector prototype holding a pencil, including the spring
mechanics.

Figure 3. Close up of the end effector

5

Figure 4. Detailed Images of User Interface

6

Figure 5. Flowchart of code for the inverse kinematics calculations in Python.

Figure 6. Flowchart of overall software subsystem from the user interface to the Arduino.

7

3.0 First Prototypes

This section provides background information regarding all the prototype tests completed to
date. The details of each test are presented in Table 1.

Table 1. Overview Prototype Test Descriptions

Test
ID

Test
Objective

Description of
Prototype used and

of
Basic Test Method

Summary of Results Date Conducted

S1 Compute
correct values
for angles

Python code
numerically computed
a solution of a 2D
inverse kinematics
problem of which the
analytical solution was
known. Angles
corresponding to a
single point were
solved.

● Correct solution
was obtained with
fast convergence
using Newton’s
method

● The method
diverged when
given a bad initial
guess

S2 Compute
correct values
for angles

Python code
numerically computed
a solution of a 3D
inverse kinematics
problem of which the
analytical solution was
known. Angles
corresponding to a
single point were
solved.

● Correct solution
was obtained with
fast convergence
using Newton’s
method

● The method
diverged when
given a bad initial
guess

E1 Check for
interference
in end
effector
design

Top and bottom parts
of the end effector
were mated together in
onshape using the
cylindrical mate. The
angles were restricted
by assuming what
would be realistic on a
physical model.

● The top part of the
end effector could
be successfully
opened without
hitting/overlapping
the bottom end
effector

2022-03-05

8

E2 Test the
spring
strength in a
clipboard

A paintbrush was
clamped in a clipboard
and held at various
angles and positions
relative to the ground.

● The clipboard
successfully held
the paintbrush in
place without any
slippage or other
movements

2022-03-06

E4 Ensure that
the
end-effector
has enough
compressive
force
structural
integrity to
lift objects
such as a
paint brush,
nozzle, and
camera.

A 3D printed end
effector held various
objects while being
attached to the end of
the arm.

● The end-effector
was able to hold
the mass of a
pencil and
paintbrush
however slippage
did occur

2022-03-11

E5 Test whether
the
end-effector
spring has
enough
compressive
force to hold
a paint brush
and a cell
phone.

Someone’s hand will
open the end-effector
and place a paint brush
and a cell phone in the
clamp and the spring
force will hold the
objects in place once
the person lets go of
the end-effector.

● The end-effector
was able to hold
the mass of a
pencil and cell
phone. Since some
slippage did occur,
there will be
something like anti
slip pads for
furniture to
increase friction
and reduce
slippage.

2022-03-11

E6 -Test whether
the
end-effector
spring has
enough
compressive
force to hold
objects
-Test if the
robot arm can

Use a 3D printed
prototype of the
end-effector to
connect to the robot
and pick up an object.

● This test was
successful, the arm
did not bend or
break under the
weight of the end
effector and
attached object.

● The end effector
can attach to the
arm with no

2022-03-11

9

support the
end-effector
and the object
and that the
end-effector
can connect
to the robot
arm without
any problems

issues.

U4 Test if UI is
able to
receive and
store user
input

A number was
inputted into the
height, width and
length sections of the
calibration interface to
ensure that the
numbers could be
recorded in variables
and printed to verify

● The UI was able to
successfully store
and print the
numbers inputted
by the user to the
terminal

2022-03-11

U5 Test UI for
exception
handling
when values
are outside of
range

Multiple tests were
conducted to verify the
exception handling of
the UI:
1. A number outside of
the range was inputted
into the UI
2. Letters were
inputted into the UI
3. No input was also
tested

● The error window
successfully
popped up for the
three tests
completed

2022-03-11

U6 Test file
upload button
on drawing
interface

4 SVG files were
stored in different
locations and uploaded
to the UI and the file
location was printed to
the terminal

● The files were
accepted by the UI
and python was
able to print the
file paths

2022-03-12

H3 Find the
maximum
radius of the
robot’s
workspace.

To find the maximum
radius, motors will be
removed from the
robot and the arm will
be extended manually
and measured using a
measuring tape.

● The maximum
radius of the arm
with the end
effector is around
76.2cm.

2022-03-11

10

3.1 Test Results

This section outlines some background information for each test and presents the results from
each prototype test.

3.1.1 Open/Close End-Effector

Figure 7. End effector in closed position Figure 8. End effector in opened position
The purpose of this test is to determine using an analytical model if the end effector could
successfully open and close without any disruptions or interferences being caused between the
different parts.

3.1.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush

Figure 9. Clipboard and paint brush horizontal to the ground

Figure 10. Clipboard and paint brush vertical to the ground
The purpose of this test is to determine if the spring from the clipboard has the torque required to
keep a paintbrush in place

11

3.1.3 Solution to Two-Dimensional Inverse Kinematics Problem in Python

To provide some background information about the prototype, the previous prototype will be
summarised. The previous inverse kinematics (IK) solution solved a two-dimensional (2D)
problem of which the analytical solution was known. To solve the IK, Newton’s method for
systems of equations took an initial guess of the solution (a set of angles) as input, then iterated
to find the correction solution using a jacobian matrix. The previous prototype proved to perform
well when the initial guess of the solution passed into Newton’s method was relatively close to
the actual solution. The method diverged when unreasonable initial guesses were passed into the
function, due to the sinusoidal nature of the functions. A different method could have been
chosen to solve this issue, but Newton’s method is quadratically convergent (very efficient) and
converges especially quickly when the functions are quadratic. Locally, the sinusoidal functions
resemble quadratic functions and can be approximated fairly well using a second-order Taylor
series as shown in Figure 11.

Figure 11. Second-order Taylor series approximation of sin(x), where sin(x) is blue and the
quadratic is orange.

The chosen solution for this divergence problem was to analyse the spatial characteristics of the
situation to determine a good initial guess for Newton’s method. To generate a good initial guess,
it was easier to test this concept using the scenario of the actual robot because the constraints of
the workspace were defined, which are presented in Section 3.2.3. For this test, the code for the
3D IK solution written for the previous prototype was used and modified to fit the specifications
of the robot and its workspace.

12

The most logical idea for a good initial guess was the solution for the angles when the robot is at
the average position. This position was defined to be in the middle of the rectangular surface on
which the arm paints.

Figure 12. Schematic of the paintable surface.

Using single variable optimization, the ymax and zmax were calculated to maximise the surface area
of the rectangle, which is explained in Section 3.2.3. An xmax was calculated based on
assumptions discussed in Section 3.2.3. The average point lies at (xmax, ymax/2, 0). To use the
angles of the joints at this point as an initial guess, they first need to be solved. The angles were
solved using Newton’s method and the initial guesses used were based on visually inspecting the
Onshape CAD file. The angles were validated by plugging the angles into the equations and
obtaining the correct coordinates.

To test the accuracy of Newton’s method, ranges for each angle were generated. The ranges of
these angles were divided evenly into 100 angles and using three for loops, coordinates for each
point corresponding to each set of angles were calculated using forward kinematic equations.
Then, the coordinates were passed as inputs into Newton’s method and using the same initial
guess (xmax, ymax/2, 0), the angles corresponding to each set of coordinates were calculated
numerically. To test the accuracy of the solutions, the actual angles generated were compared to
the numerically calculated angles using an error function, where the absolute values of the
differences between each angle are calculated. If the absolute values of the differences between
all three angles were less than 0.01 radians, then the solution was considered correct. A function
called testAccuracy was created and if the numerical solution passed the error test, then a

13

variable called accuracy was increased by one. To check the percentage of test cases that were
correct, the final value of accuracy was divided by the total number of test cases. After running
1000000 test cases, covering the entire rectangular surface evenly, the testAccuracy function
returned 1.0, indicating that 100% percent of the test cases were solved correctly.

3.1.4 Usability of User Interface
Test U4: User Interface information storage
Test U4 was conducted to determine if the coded file could properly receive and store
information. The video linked above shows the test conducted and the results of the test. From
the video, the user interface was able to store the numbers inputted by the user and successfully
printed the width, height, and length of the brush into the terminal in VSCode
Test U5: User Interface Exception Handling
Test U5 was conducted to determine if the user interface was capable of properly handling
incorrect outputs from the user, such as words instead of numbers, or no input into the system.
The video linked above shows the tests conducted and the results of the tests. From the video, the
UI was able to detect when the user inputted the wrong type of information, and when the user
did not input any information into the system.
Test U6: Uploading and Retaining Paths for SVG Files
Test U6 was conducted to determine whether the user interface was able to store the link to an
SVG file by placing four SVG files into separate locations and uploading them independently
into the UI. The file paths were printed to the terminal to determine accuracy. From the video
linked above, the UI was able to accept SVG files and print the path to the file.

14

https://drive.google.com/file/d/1KfS3jZ5BRJdkHJxtAcMOSyRDUcjuqXuE/view?usp=sharing
https://drive.google.com/file/d/16hqWil7QaGQfoZww8fxGGMN4YTQ1m_Ls/view?usp=sharing
https://drive.google.com/file/d/1Q8eyd6nS_vjGx67GYZoXbKwKCHT4LZp0/view?usp=sharing

3.1.5 Structural Strength of the End-Effector

Figure 13. The end-effector holding a pencil
This test was to determine if the end-effector has the structural integrity to hold objects in place
without having damage occur to the object or end-effector. A maximum safe mass was then
going to be chosen based on the results of the test.

3.1.6 Compressive Strength of the End-Effector

Figure 14. The end-effector holding a paintbrush
The purpose of this test was to determine whether the compressive strength of the spring was
strong enough to hold an object in the end effector without slippage occurring.
3.1.7 Robotic Arm Supporting End-Effector and Object

15

Figure 15. The end-effector holding a paintbrush while being attached to the arm
The purpose of this test was to determine if the arm had the structural strength to hold the
combined masses of the end effector and another object.

3.2 Analysis of Results

3.2.1 Open/Close End-Effector

This test was to determine whether the dimensions of the CAD were sufficient in size to open the
end effector while preventing the back end of the bottom and top end effectors from touching.
When the Z angle of the cylindrical mate connected to the top and bottom pieces of the end
effector was restricted between 0 and 30 degrees, the end effector could open a sufficient amount
without the top end effector hitting the bottom end effector.

3.2.2 Horizontal/Vertical Positions of a Clipboard Holding a Paintbrush

This test was carried out to determine whether or not the spring of a clipboard had a sufficient
amount of force to hold a paint brush in place under various angles and positions. The clipboard
was held at extreme angles in the vertical and horizontal positions, as well as angles that would
be seen by the robot. The clipboard held the paint brush in all of these positions without any
complications.

16

3.2.3 Solution to Three-Dimensional Inverse Kinematics Problem in Python

When constructing the inverse kinematics solution, an assumption was made that is important to
state: the maximum of the magnitude of the first angle at the base was chosen to be 45o, or π/4
radians. This assumption was not crucial, but if this assumption were not made, then the user
would be allowed to place the robot anywhere they would like. With this flexibility, the user
could place the robot too far from the wall, severely limiting the amount of the workspace that
covers the paintable surface. Also, if the robot is placed too close to the wall, the user could have
difficulty handling the end-effector when interchanging devices to be held. In future iterations of
the design, it is possible to have flexibility in where the robot is placed. Due to the assumption of
the angle and the measured maximum reach of the robot, the robot should be placed at a distance
of 45 cm from the wall on which it is painting, as shown in Figure 16.

Figure 16. Top view showing the maximum range of angle one and the maximum distance from
the robot base to the wall.

Based on the assumption that xmax is 45 cm and |Ө1,max| is , the other dimensional constraintsπ/4
were calculated using optimization, and the ranges for the angles were calculated using inverse
kinematics.

17

Figure 17. Paintable surface to be optimised.

To give the user the maximum surface area to paint, the rectangle shown in Figure 17 was
optimised. The radius, r, was calculated using basic trigonometric functions, which is obvious
from looking at Figure 16. Knowing r, an expression for the surface area in terms of only the
angle φ could be used to optimise the area, which would give ymax, and zmax as shown in the
following equations.

Because φ is , ymax, and zmax are equal.π/4

With the ranges for the three angles known, the function test accuracy was coded. The function
works as follows:

1. Divide the angle ranges and establish the ranges of the angles.
2. Using three for loops, generate a new set of angles (T1,ijk, T2,ijk,T3,ijk) for each iteration of

the loops.
3. Using the function FK (for forward kinematics), calculate the coordinates of the

end-effector at the given angles (T1,ijk, T2,ijk,T3,ijk).

18

4. Use the coordinates obtained from FK as inputs for Newton;s method to solve for the
angles numerically using IK.

5. Use the function error to compare the actual angles with the angles calculated by
Newton’s method.

a. If the angles calculated using IK are correct, then increment variable accuracy by
6. At the end of each test case, increment the variable count by 1 to keep track of the

number of test cases.
7. Finally return the percentage of correct cases by dividing accuracy by count.

Figure 18. Python code for the testAccuracy function, which tests the accuracy of the IK solver.

19

An accuracy of 100% indicates that the IK solution in 3D works and can be integrated to use to
control the stepper motor through Arduino. As a qualitative test to ensure that the solutions
obtained were physically reasonable, the movement of the arms were animated as shown in the
following videos.

Animation 1
Animation 2

In the first video, the arm is being viewed from the side in the x-y plane as it is being raised. In
the second video, the arm is being viewed from the back in the y-z plane as it moves in the
motion of a star, followed by a circle. These animations were created solely based on the angles
calculated from Newton’s method. By visual inspection, the motion of the arm looks reasonable
and as expected, which validates the accuracy of 100% calculated by the testAccuracy function.

In the second animation, the arm moves in a star and circle pattern. This proves that given the
correct coordinates, the arm can use IK to adjust the joint angles accordingly to produce the
specified patterns. The next steps in the testing of the code will be to interface between Python
code and Arduino code using the pyfirmata library, and to interpret a set of coordinates extracted
from an SVG file using a Python library: possible svglib.

3.2.4 Usability of User Interface

Tests U4-U6 were conducted to determine the accuracy of the backend of the user interface. The
test results for the UI shown in Section 3.1.4 show that the UI was able to successfully store
information and handle incorrect inputs from the user. From the results, it can be determined that
the backend of the user interface can run efficiently without any major issues

3.2.5 Structural Strength of the End-Effector

The end-effector was able to hold the mass of a paintbrush and pencil even after suffering
structural damage. This leads the group to assume that similar masses should be acceptable with
a structurally intact end-effector. However, during the tests slippage did occur while holding a
paintbrush and pencil. Less slippage occurred with a cell phone. These results may be caused by
the different centres of mass of the various objects as well as the shape contrast.

3.2.6 Compressive Strength of the End-Effector

The end-effector was able to hold a pencil and paintbrush in place, however there was slippage
that occurred. The end effector will be modified to minimise possible slippage. A cell phone was
also held by an end-effector. This test will not be conducted while attached to the arm due to the
mass of the average cell phone in the group exceeding the maximum load capacity of the arm
(without including the mass of the end effector).

20

https://drive.google.com/file/d/18H9lgDJRgfh0Cfr_V1NKqAdtaMip7YsB/view?usp=sharing
https://drive.google.com/file/d/1wjBfPvgm29B_gxGyhbwvtGGDu_rnc2Lx/view?usp=sharing

3.2.7 Robotic Arm Supporting End-Effector and Object
The robotic arm was able to be successfully connected to the end-effector. While attached the
end-effector was easily able to open and close to accommodate for the placement or removal of
an object. The robotic arm was able to withstand the weight of the end-effector in addition to the
object the end-effector was holding.

4.0 Current Bill of Materials
Some small changes have been made to the bill of materials bringing the total down to 17.20$
which is under the 50$ limit. At the time it was created, an arduino mega and shield were
included; they have since been taken out after discovering that they are given in class.
See spreadsheet for details.

5.0 Prototyping Test Plan

Prototyping is important because it allows specific design elements to be isolated and tested. The
approach chosen for this project is to conduct many tests that are smaller. This approach will
allow the team to ensure that each part of the design works before building a more complicated
part. To ensure that all tests can be completed on time, the following table will provide a
structured plan that outlines the details of the prototype testing. Since there are several
subsystems, preliminary tests are not necessarily dependent on each other.

Table 1. Prototype Test Plan

Test
ID

Test
Objective

Description of
Prototype used and of

Basic Test Method
(What)

Description of
Results to be

Recorded and
how these results

will be used
(How)

Estimated
Test

duration
and

planned
start
date

(When)

Software

S3 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 2D inverse
kinematics problem
where the end-effector
must trace a line to
simulate painting of a
line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the line)
and check if the angles
are correct when the
end-effector passes
through each point
-If possible, make an

Duration: 15
minutes

Test date:
March 14

21

https://docs.google.com/spreadsheets/d/15cni-5vKvA-95ndAx54FuAEuGdcO1bp6oyQC9yJOpiQ/edit#gid=0

animation of the arm
drawing and check
whether the line is correct
and the robot movement
is feasible

S4 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 2D inverse
kinematics problem
where the end-effector
must trace a circle to
simulate painting of a
circle.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the
circle) and check if the
angles are correct when
the end-effector passes
through each point
-If possible, make an
animation of the arm
drawing and check
whether the circle is
correct and the robot
movement is feasible

Duration: 1
minute

Test date:
March 14

S5 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 3D inverse
kinematics problem
where the end-effector
must trace a line on a 2D
surface to simulate
painting of a line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the line)
and check if the angles
are correct when the
end-effector passes
through each point
-If possible, make an
animation of the arm
drawing and check
whether the line is correct
and the robot movement
is feasible

Duration: 1
minute

Test date:
March 15

S6 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 3D inverse
kinematics problem
where the end-effector
must trace a circle on a
2D surface to simulate
painting of a line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the
circle) and check if the
angles are correct when
the end-effector passes
through each point
-If possible, make an
animation of the arm

Duration: 1
minute

Test date:
March 15

22

drawing and check
whether the circle is
correct and the robot
movement is feasible

S7 Ensure that
the Arduino
can interpret
and use
Python code
to perform
calculations.

Python code will be
interpreted by Arduino
and cause a motor to
rotate. The pyfirmata
library will be imported
to allow Python and
Arduino to
communicate.

If the motor moves, the
test is successful because
it is evidence that the
python code is able to be
used by the Arduino. If
no movement occurs, the
code did not work and
debugging of code or
investigation of other
communication methods
will be required.

Test duration:
10 minutes

Test date:
March 16

Hardware

H1 Ensure that
the Arduino
can
communicate
with the
motors.

Motors and the Arduino
will be connected to a
breadboard. Arduino
code will instruct the
motors to rotate.

If the hardware
components can
communicate, the motor
will move. Once this test
is passed, Test 9 can take
place and aim for a more
precise result.

Test duration:
5 minutes

Test date:
March 16

H2 Check
whether the
Arduino can
instruct the
motors to
rotate
precisely to a
specified
angle.

The Arduino will make
each stepper motor
rotate by 90o. A straight
object, such as a stick,
will be attached to the
motor to help measure
the accuracy of the
rotation.

The angle of rotation will
be measured using a
protractor. The start and
end points of the stick
will be marked as a
reference for the
measurement.

Test duration:
30 minutes

Test date:
March 16

H4 Test the kill
switch

The Aruduino will be
rotating a motor
indefinitely. The kill
switch button will be
connected to the
Arduino and if it is
pressed, the Arduino
should stop the motor
from rotating.

If the motor stops
rotating, the kill switch
works. Otherwise, there
is a hardware problem or
a software problem that
must be identified and
corrected to test the
switch again.

Test duration:
10 minutes

Test date:
March 16

23

User Interface (UI)

U7 Test if stop
button on UI
is able to stop
system

Design a simple
application using Python
(Tkinter) that has a
‘stop’ button. The user
will hit the stop button
and check to see if the
system outputs a specific
value (“the value to stop
the code”)

If the output from the
system on the IDE is a
specific value (“0” for
off), the stop button is
able to stop the program

Test
Duration: 5
minutes

Test Date:
March 15

U8 Test if user
input can be
used to
control a
hardware
system.

Design a simple
application using Python
(Tkinter) that takes in a
user input and passes it
on to the Python code.
The user will indicate
how many times a motor
should rotate and change
direction.

If the motor rotates and
changes direction the
same number of times
that the user indicated
through the user
interface, then this result
confirms that user input
can be passed through
Python and the Arduino
to specify the action of
hardware.

Test duration:
20 minutes

Test date:
March 16

Overall Functionality

F1 Test if the
code can
instruct the
end-effector
to move to a
precise
position.

A position in 3D space
will be passed into the
code, which should
make the motor rotate by
the angles calculated
using inverse kinematics
to place the end-effector
in the correct location.

To confirm that the
end-effector moves to the
correct location, the
location in 3D space will
be identified using a
measuring tape. A
physical marking will be
placed in the location. If
the end-effector moves to
the location of the
physical marking, the test
is successful. If the robot
fails the test, the error
must be identified and
fixed before repeating the
test.

Test duration:
45 minutes

Test date:
March 16

F2 Test if the
robot can
draw a
straight line

The test conductor will
place a marker in the end
effector clamp and
measure the distance

The robot should be able
to successfully draw the
line on the surface. The
success of the test will be

Test duration:
45 minutes

Test date:

24

on a surface
using a
marker.

from the base of the
robot to the surface to
draw on. The conductor
will then input the
distance in the user
interface and press start.
The robot should then
draw the programmed
line on the surface. The
specifications of the line
will be coded so that the
user does not have to
pass a vector drawing
into the user interface.

based on whether the line
is of the distance
specified in the code and
if the line is drawn in the
correct location. If this
comprehensive test of a
simple drawing is
successful, more
complicated
comprehensive tests can
be conducted, such as
drawing more
complicated shapes and
receiving drawing
instruction through the
user interface in the form
of vector drawings.

March 17

F3 Test if the
robot can
draw a circle
on a surface
using a
marker.

This test is identical to
Test F2, but the robot
will draw a circle.

The results of the test will
be processed identically
as in Test F2, but the
radius of the circle and
the position of its centre
will be measured.

Test duration:
45 minutes

Test date:
March 18

F4 Determine
whether the
robot can
draw a
drawing
given a
vector
drawing
passed into
the user
interface.

This test is identical to
Test F2, but instead of a
preprogrammed line, a
vector drawing will be
passed into the user
interface and processed
to instruct the robot to
draw the given diagram.

If the software can
process the vector
drawing in a timely
manner without any
errors and the arm can
correctly draw the line
given by the vector
drawing, then the test is
successful. The same
measuring techniques in
Test 18 will be used to
validate the line.

Test duration:
45 minutes

Test date:
March 19

End Effector

E7 Test if anti
slip pads for
furniture will
create
adequate
friction to

Someone’s hand will
open the end-effector
with the newly installed
anti-slip pads and place a
paint brush and a cell
phone in the clamp and

If the end effector can
hold the object (paint
brush, camera, or nozzle)
without it slipping then
this test is successful

Test duration:
1 minute

Test date:
March 16

25

stop an object
from moving
in the end
effector.

the spring force will hold
the objects in place once
the person lets go of the
end-effector.

6.0 Materials for Each Prototype

This section contains a table that outlines materials required to build each prototype and conduct
its corresponding test. The numbers in Table 1 correspond to the numbers in the “Test ID”
column of Table 2.

Table 2. Materials for each prototype test

Test ID Materials Needed

S3 Python

S4 Python

S5 Python

S6 Python

S7 Python

H1 Python
Aruino
Pyfirmata library
Motors

H2 Motors
Arduino
Breadboard

H4 Arduino
Motors
Switch

U7 Python

U8 Python

F1 Robotic arm
Arduino
Motors
End effector

26

F2 Marker
End effector
Robotic arm
Arduino
Motors

F3 Marker
End effector
Robotic arm
Arduino
Motors

F4 Python
Marker
End effector
Robotic arm
Arduino
Motors
Inkscape

7.0 Risks and Contingency Plans

Table 3. Risks and Contingency plans

Risk Issue Contingency plan

1. High Costs - The budget for this
project is 50$, certain
electronics cost a fair
amount of this budget.
This could be an issue
moving forward.

- A detailed bill of
materials must be
created and followed.
Things must be
ordered in advance to
avoid extra shipping
costs.

2. Parts not coming in - If parts don’t come in
on time it could
greatly affect the
progress of our arm.

- To avoid this issue, we
must have a detailed
list of materials and
order online the parts
as soon as possible

3. Lack of clarity - Changes to the project
and the responsibility
of the arm will pose a
great risk to the

- If something is not
clear specific
questions must be
directed to the client

27

overall project. about what the arm
must accomplish.

4. Scheduling issues
(prototype)

- There is not much
time to develop each
prototype, this could
lead to time
management issues
down the line.

- The schedule that has
been created on Wrike
must be adamantly
followed to make sure
the project stays on
track. If a team
member falls behind
on their portion they
must reach out and
ask for help.

5. Technology risks - Technology risks such
as the 3D printing
machines or laser
cutting machines not
working could pose a
threat to the success of
the prototypes.

- The prototype plan
must be followed. The
plan will make sure
that the construction
of the end effector is
completed early, this
way if the machines
are not working we
will still have plenty
of time to complete
the task.

6. Scheduling issues
(software)

- Software is difficult to
schedule because we
will not know how
long it will take to do
some of the parts of it.

- To avoid this we will
take time to estimate
how long each portion
will take and divide it
up equally. If someone
realizes that their
section is going to
take longer than
originally planned
they will reach out to
the group and another
team member can help
them out.

7. Time issues (3D
printing)

- 3D printing takes a
considerable amount
of time and if we do
not take the time to
calculate how long the
3D printing will take,

- To make sure we have
plenty of time to
complete the sections
of the end effector
using 3D printing the
prototype test plan

28

it will be a big
problem.

must be followed. It
must allow time for
the 3D printing to be
completed and it must
not be attempted the
night before.

8. Code Issues - Bugs and errors could
be a result of rushing
near the end of the
project to get the
software done on
time.

- Frequently checking
the code for bugs and
errors can prevent
this. Codes should
also not be left with
error messages to
make sure nothing is
forgotten.

8.0 Conclusion

The Department of National Defence has a need for a robotic arm that uses inverse kinematics to
paint surfaces. In this deliverable, the first prototype and second test plan in Deliverable F were
used to create a second prototype and third prototype testing plan as well as an updated bill of
materials necessary for developing the final product.

29

