
Project Deliverable E
Project Schedule and Cost

Ani Preedom
Christy Lau

Paul Shedden
Claire Durand

GNG1103 Project Group 6
February 6, 2022

1

Abstract

On Halifax-class frigates, the Department of National Defence has a need for a robotic arm that
uses inverse kinematics to paint surfaces. The robot must also scan and clean areas to identify
and remove defects. To design the robot, a design process with several steps will be followed.
Thus far, conceptual designs have been generated using design criteria based on raw data
gathered from one of the users. At this stage in the design process, prototype testing must be
planned to ensure that the project can be completed in the allotted time. This report presents
detailed design drawing, a prototyping test plan needed to create the design, a bill of materials
(BOM), a list of materials needed for each prototype test, and some associated risks and
contingencies for each test.

2

Table of Contents

1.0 Introduction 4

2.0 Detailed Design Drawing 4

3.0 Bill of Materials 7

4.0 Prototyping Test Plan 7

5.0 Materials for Each Prototype 11

6.0 Risks and Contingency Plans 12

7.0 Conclusion 14

Appendix: Prospective Test Plan Ideas 14

3

1.0 Introduction

The Department of National Defence expressed the need for a robotic arm with three degrees of
freedom to paint areas on Halifax-class frigates. Conceptual designs were created based on the
design criteria produced from the interpreted needs. Using the conceptual designs a system was
created and analysed to create a bill of materials and a prototype testing plan.

2.0 Detailed Design Drawing

In Deliverable D, many design ideas were created for each subsystem. Three design ideas for the
overall system were selected after analysis of the preliminary ideas. Of the three overall system
designs, the best design according to the design criteria was chosen to be pursued. Figure 1
shows a detailed design diagram of the three stepper motors for controlling the degrees of
freedom of the robotic arm, the ultrasonic sensor to detect possible individuals or other objects in
the area, and the kill switch to turn off the arm in case of an emergency.

Figure 1. Detailed design diagram of Circuit for Motors and Sensors.

Figure 2 shows a detailed drawing of various viewpoints of the robotic arm, end effector while
holding a paintbrush.

4

Figure 2. Detailed Drawing of Robotic Arm with End Effector.

Figure 3 shows a close up of the end effector and details the basic mechanics of how the spring
loaded end effector will function.

5

Figure 3. Detailed Drawing of End Effector

Figure 4. Detailed Drawing of User Interface and Mechanics of Interface

Figure 5. Flowchart of code for the inverse kinematics calculations in Python.

6

Figure 6. Flowchart of overall software subsystem from the user interface to the Arduino.

3.0 Bill of Materials

See spreadsheet for details.

4.0 Prototyping Test Plan

Prototyping is important because it allows specific design elements to be isolated and tested. The
approach chosen for this project is to conduct many tests that are smaller. This approach will
allow the team to ensure that each part of the design works before building a more complicated
part. To ensure that all tests can be completed on time, the following table will provide a
structured plan that outlines the details of the prototype testing. Since there are several
subsystems, preliminary tests are not necessarily dependent on each other.

Table 1. Prototype Test Plan

Test
ID

Test
Objective

Description of
Prototype used and of

Basic Test Method
(What)

Description of
Results to be

Recorded and
how these results

will be used

Estimated
Test

duration and
planned

start

7

https://docs.google.com/spreadsheets/d/15cni-5vKvA-95ndAx54FuAEuGdcO1bp6oyQC9yJOpiQ/edit#gid=0

(How) date
(When)

1 Compute
correct values
for angles

Python code will
numerically compute a
solution of a 2D inverse
kinematics problem of
which the analytical
solution is known. The
end-effector will be
static.

Values of angles will be
compared to the correct
(known values). A match
will indicate that the
inverse kinematics code
was successful.

Duration: 1
minute

Test date:
February 21

2 Compute
correct values
for angles

Python code will
numerically compute a
solution of a 3D inverse
kinematics problem of
which the analytical
solution is known. The
end-effector will be
static.

Values of angles will be
compared to the correct
(known) values. A match
will indicate that the
inverse kinematics code
was successful.

Duration: 1
minute

Test date:
February 21

3 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 2D inverse
kinematics problem
where the end-effector
must trace a line to
simulate painting of a
line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the line)
and check if the angles
are correct when the
end-effector passes
through each point
-If possible, make an
animation of the arm
drawing and check
whether the line is correct
and the robot movement
is feasible

Duration: 15
minutes

Test date:
February 21

4 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 2D inverse
kinematics problem
where the end-effector
must trace a circle to
simulate painting of a
circle.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the
circle) and check if the
angles are correct when
the end-effector passes
through each point
-If possible, make an

Duration: 1
minute

Test date:
February 21

8

animation of the arm
drawing and check
whether the circle is
correct and the robot
movement is feasible

5 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 3D inverse
kinematics problem
where the end-effector
must trace a line on a 2D
surface to simulate
painting of a line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the line)
and check if the angles
are correct when the
end-effector passes
through each point
-If possible, make an
animation of the arm
drawing and check
whether the line is correct
and the robot movement
is feasible

Duration: 1
minute

Test date:
February 22

6 Compute the
correct values
for angles.

Python code will
numerically compute a
solution of a 3D inverse
kinematics problem
where the end-effector
must trace a circle on a
2D surface to simulate
painting of a line.

-Compute an analytical
solution of a static
end-effector at multiple
nodes (points on the
circle) and check if the
angles are correct when
the end-effector passes
through each point
-If possible, make an
animation of the arm
drawing and check
whether the circle is
correct and the robot
movement is feasible

Duration: 1
minute

Test date:
February 22

7 Ensure that
the Ardunio
can interpret
and use
Python code
to perform
calculations.

Python code will be
interpreted by Arduino
and cause a motor to
rotate. The pyfirmata
library will be imported
to allow Python and
Arduino to
communicate.

If the motor moves, the
test is successful because
it is evidence that the
python code is able to be
used by the Arduino. If
no movement occurs, the
code did not work and
debugging of code or
investigation of other
communication methods

Test duration:
10 minutes

Test date:
February 27

9

will be required.

8 Ensure that
the Arduino
can
communicate
with the
motors.

Motors and the arduino
will be connected to a
breadboard. Arduino
code will instruct the
motors to rotate.

If the hardware
components can
communicate, the motor
will move. Once this test
is passed, Test 9 can take
place and aim for a more
precise result.

Test date:
February 27

9 Check
whether the
Arduino can
instruct the
motors to
rotate
precisely to a
specified
angle.

The Arduino will make
each stepper motor
rotate by 90o. A straight
object, such as a stick,
will be attached to the
motor to help measure
the accuracy of the
rotation.

The angle of rotation will
be measured using a
protractor. The start and
end points of the stick
will be marked as a
reference for the
measurement.

Test duration:
30 minutes

Test date:
February 27

10 Determine
whether the
end-effector
can pick up
an object
with a mass
higher than
what is
expected

This prototype is
analytical so that success
of the end-effector can
be predicted prior to
printing a physical
prototype.

The analytical test will
produce a number that
when compared with a
design constraint, will
indicate whether the
end-effector will be
successful.

Test date:
February 27

11 Test the
conceptual
design of a
spring-based
clamp
end-effector

Build a physical
prototype of the clamp
end effector using
inexpensive materials
such as wood

This test is qualitative,
with the purpose of
gaining insight to the
type of design.
Qualitative observations
can be used to modify
the actual 3D printed
design before it is
printed.

Test
duration:15
minutes

Test date:
March 3

12 Test to see if
a simple app
can be built
using the
MIT App
Inventor.

Design a simple
application on the MIT
App Inventor that prints
“Hello” to the user
interface.

If the app runs
successfully, the program
will print “Hello” to the
user interface. This
proof-of-concept test can
then allow the team to
build more complicated

Test duration:
5 minutes

Test date:
February 26

10

apps.

13 Test to see if
a simple app
that uses user
input can be
built using

the MIT App
Inventor.

Design a simple
application on the MIT
App Inventor that asks a
user for a string and
prints the string back to
the user/

If the app prints the string
that the user entered, then
the test confirms that user
input is working
successfully.

Test duration:
5 minutes

Test date:
February 26

5.0 Materials for Each Prototype

This section contains a table that outlines materials required to build each prototype and conduct
its corresponding test. The numbers in Table 1 correspond to the numbers in the “Test ID”
column of Table 2.

Table 2. Materials for each prototype test

Test ID Materials Needed

1 Python

2 Python

3 Python

4 Python

5 Python

6 Python

7 Python
Aruino
Pyfirmata library
Motors

8 Motors
Arduino
Breadboard

9 Arduino
Stepper motor
Plastic Bracket

10 Onshape

11

11 Wood/other cheap material

12 MIT app inventor

13 MIT app inventor

6.0 Risks and Contingency Plans

Table 3. Risks and Contingency plans

Risk Issue Contingency plan

1. High Costs - The budget for this
project is 50$, certain
electronics cost a fair
amount of this budget.
This could be an issue
moving forward.

- A detailed bill of
materials must be
created and followed.
Things must be
ordered in advance to
avoid extra shipping
costs.

2. Parts not coming in - If parts don’t come in
on time it could
greatly affect the
progress of our arm.

- To avoid this issue, we
must have a detailed
list of materials and
order online the parts
as soon as possible

3. Lack of clarity - Changes to the project
and the responsibility
of the arm will pose a
great risk to the
overall project.

- If something is not
clear specific
questions must be
directed to the client
about what the arm
must accomplish.

4. Scheduling issues
(prototype)

- There is not much
time to develop each
prototype, this could
lead to time
management issues
down the line.

- The schedule that has
been created on Wrike
must be adamantly
followed to make sure
the project stays on
track. If a team
member falls behind
on their portion they
must reach out and
ask for help.

5. Technology risks - Technology risks such - The prototype plan

12

as the 3D printing
machines or laser
cutting machines not
working could pose a
threat to the success of
the prototypes.

must be followed. The
plan will make sure
that the construction
of the end effector is
completed early, this
way if the machines
are not working we
will still have plenty
of time to complete
the task.

6. Scheduling issues
(software)

- Software is difficult to
schedule because we
will not know how
long it will take to do
some of the parts of it.

- To avoid this we will
take time to estimate
how long each portion
will take and divide it
up equally. If someone
realizes that their
section is going to
take longer than
originally planned
they will reach out to
the group and another
team member can help
them out.

7. Time issues (3D
printing)

- 3D printing takes a
considerable amount
of time and if we do
not take the time to
calculate how long the
3D printing will take,
it will be a big
problem.

- To make sure we have
plenty of time to
complete the sections
of the end effector
using 3D printing the
prototype test plan
must be followed. It
must allow time for
the 3D printing to be
completed and it must
not be attempted the
night before.

8. Code Issues - Bugs and errors could
be a result of rushing
near the end of the
project to get the
software done on
time.

- Frequently checking
the code for bugs and
errors can prevent
this. Codes should
also not be left with
error messages to
make sure nothing is
forgotten.

13

7.0 Conclusion

The Department of National Defence has a need for a robotic arm that uses inverse kinematics to
paint surfaces. In this deliverable, the ideal conceptual design developed in Deliverable D was
used to create a prototype testing plan and a bill of materials necessary for developing the final
product.

Appendix: Prospective Test Plan Ideas

Although test plans up until March 6 have been listed in Section 4.0, it is important to have
foresight for better time and project management. In this appendix, tentative ideas for future test
plans are suggested.

Table 4. Prospective Prototype Test Plan Ideas

Test ID Test Objective Description of
Prototype used

and of
Basic Test
Method
(What)

Description of
Results to be

Recorded and
how these

results
will be used

(How)

Estimated Test
duration and
planned start

date
(When)

14 Test if user input
can be used to

control a
hardware
system.

Design a simple
application on
the MIT App
Inventor (or UI)
that takes in a
user input and
passes it on to
the Python code.
The user will
indicate how
many times a
motor should
rotate and
change
direction.

If the motor
rotates and
changes
direction the
same number of
times that the
user indicated
through the user
interface, then
this result
confirms that
user input can be
passed through
Python and the
Arduino to
specify the
action of
hardware.

Test duration:
20 minutes

Test date:
March 6

14

15 Ensure that the
end-effector has

enough
compressive

force structural
integrity to lift

objects such as a
paint brush,
nozzle, and

camera.

Make a 3D
printed
prototype of the
end effector. A
paint brush and a
cell phone will
be measured to
estimate the
mass required
for the
end-effector to
support. A safety
factor will be
determined to
multiply the
mass of the
heavier object
between the
paint brush and
cell phone. An
object of similar
mass to the
required mass
will be picked
up by the robot.
If such a mass
cannot be found,
a bucket of
water will be
used to create a
custom mass by
calculating the
required volume
of water using
the desired mass
and the density
of water.

If the
end-effector can
lift the mass for
one minute
without
dropping it and
show no signs of
slippage and
breakage
anywhere on the
robotic arm, then
the result
confirms that
any object with a
mass less than
the mass tested
can be lifted by
the arm.

Test duration:
30 minutes

Test date:
March 6

16 Test whether the
end-effector
spring has
enough
compressive
force to hold a
paint brush and a
cell phone.

Make a 3D
printed
prototype of the
end effector and
use it to grip and
pick up an object
without the use
of the robot.

This is a
pass-fail test. If
the end-effector
can hold the
paint brush and
the cell phone
and they do not
move due to

Test duration:
20 minutes

Test date:
March 6

15

Someone’s hand
will open the
end-effector and
place a paint
brush and a cell
phone in the
clamp and the
spring force will
hold the objects
in place once the
person lets go of
the end-effector.

gravity, then the
test is
successful. If the
end-effector
drops an object,
a spring with a
higher spring
constant will
have to be used
to provide more
compressive
force

17 -Test whether
the end-effector
spring has
enough
compressive
force to hold
objects
-Test if the robot
arm can support
the end-effector
and the object
and that the
end-effector can
connect to the
robot arm
without any
problems

Use a 3D printed
prototype of the
end-effector to
connect to the
robot and pick
up an object.

The test will be
successful if the
robot can pick
up a paint brush
and a cell phone,
and if the robot
arm shows no
sign of breakage
or deformation.
If a failure
occurs, the cause
will be identified
to redesign the
end-effector.

Test duration: 20
minutes

Test date:
March 6

18 Determine
whether an
ultrasonic sensor
can be used for
safety to detect
whether a person
is too close to
the robot while
in use

In the code, a
selected distance
of 2 metres will
be declared. An
ultrasonic sensor
will be placed at
various distances
from a wall:
closer and
farther than 2
metres.

If the sensor is
within 2 metres
from the wall,
the code will
output True.
Otherwise, it
will output
False.

The value in this
test is that if a
person is too
close to the
robot while in
use, the robot

Test duration:
20 minutes

Test date:
March 10

16

will stop moving
as a safety
measure to
prevent any
injuries.

19 Find the
maximum radius

of the robot’s
workspace.

To find the
maximum
radius, motors
will be removed
from the robot
and the arm will
be extended
manually and
measured using
a measuring
tape.

The value of the
distance on the
measuring tape
will be recorded.
This value will
be used in the
code to prevent
possible errors
that could occur
if the user
instructs the
robot to place its
end-effector
outside its
workspace.

Test duration:
20 minutes

Test date:
March 10

20 Test the kill
switch

The Aruduino
will be rotating a
motor
indefinitely. The
kill switch
button will be
connected to the
Arduino and if it
is pressed, the
Arduino should
stop the motor
from rotating.

If the motor
stops rotating,
the kill switch
works.
Otherwise, there
is a hardware
problem or a
software
problem that
must be
identified and
corrected to test
the switch again.

Test duration:
10 minutes

Test date:
March 10

21 Test if the code
can instruct the
end-effector to

move to a
precise position.

A position in 3D
space will be
passed into the
code, which
should make the
motor rotate by
the angles
calculated using
inverse
kinematics to

To confirm that
the end-effector
moves to the
correct location,
the location in
3D space will be
identified using
a measuring
tape. A physical
marking will be

Test duration:
45 minutes

Test date:
March 13

17

place the
end-effector in
the correct
location.

placed in the
location. If the
end-effector
moves to the
location of the
physical
marking, the test
is successful. If
the robot fails
the test, the error
must be
identified and
fixed before
repeating the
test.

22 Test if the robot
can draw a

straight line on a
surface using a

marker.

The test
conductor will
place a marker
in the end
effector clamp
and measure the
distance from
the base of the
robot to the
surface to draw
on. The
conductor will
then input the
distance in the
user interface
and press start.
The robot should
then draw the
programmed line
on the surface.
The
specifications of
the line will be
coded so that the
user does not
have to pass a
vector drawing
into the user
interface.

The robot should
be able to
successfully
draw the line on
the surface. The
success of the
test will be
based on
whether the line
is of the distance
specified in the
code and if the
line is drawn in
the correct
location. If this
comprehensive
test of a simple
drawing is
successful, more
complicated
comprehensive
tests can be
conducted, such
as drawing more
complicated
shapes and
receiving
drawing
instruction
through the user

Test duration:
45 minutes

Test date:
March 13

18

interface in the
form of vector
drawings.

23 Test if the robot
can draw a circle

on a surface
using a marker.

This test is
identical to Test
22, but the robot
will draw a
circle.

The results of
the test will be
processed
identically as in
Test 22, but the
radius of the
circle and the
position of its
centre will be
measured.

Test duration:
45 minutes

Test date:
March 13

24 Determine
whether the

robot can draw a
drawing given a
vector drawing
passed into the
user interface.

This test is
identical to Test
22, but instead
of a
preprogrammed
line, a vector
drawing will be
passed into the
user interface
and processed to
instruct the robot
to draw the
given diagram.

If the software
can process the
vector drawing
in a timely
manner without
any errors and
the arm can
correctly draw
the line given by
the vector
drawing, then
the test is
successful. The
same measuring
techniques in
Test 22 will be
used to validate
the line.

Test duration:
45 minutes

Test date:
March 17

Table 5. Materials for Each Prototype Test

Test ID Materials Needed

14 MIT app inventor
Python
Motors

15 Printed end effector
Cellular Phone
Paint brush

19

16 Printed end effector
Cellular Phone
Paint brush

17 Printed end effector
Paint brush
Robotic arm

18 Arduino
Ultrasonic sensor

19 Motors
Arm
Measuring tape

20 Arduino
Motors
Switch

21 Robotic arm
Arduino
Motors
End effector

22 Marker
End effector
Robotic arm
Arduino
Motors

23 Marker
End effector
Robotic arm
Arduino
Motors

24 MIT app inventor
Marker
End effector
Robotic arm
Arduino
Motors
Inkscape

20

