

A Third Hand

A Third Hand The Helping Hand By: Sean Tsang, Daniel Deiros, Kesi Ezirim

uOttawa.ca

Agenda

Project Plan

Defining the Plan

Design Concepts

Business Model

Future Endeavors

Project Plan

Phase 1: Defining the Plan

Craftsman tools.

P ··m 2.

Bedusan

C Stadis + 4

5

0

D Rest out at at suddepons d

chart and

A King site and

4 & Book shalf

1 Hendbonrd

A Ocourt

A Built in workt

D Marter -I Lawren +

2

Terrer.

Anniture lister

g. wing warm A solar A Coffee make The the internet

Bedrom 1.

H. Taker D Owner water Charts + to

A Curponid D Katalan House D Food Portert

R.

Will be a

A Barne

chorose and

0

 \Leftrightarrow A Bash Tollet

0

04 Parto

1 5

23/64" 438]

16.12 1-.6

212

209

5/16"

2195 13

ci 1

19/32

6'

1/8"-

[2633]

11/16"

._9

8'-7

& Screwdriver Saw to Hammer Cable cutter Sandpaper ** Diagonal p 5 Linesman Long

> 3 mu @ 7

•

trilge

Problem Statement

Design Model

Functional Decomposition

Priorities/Needs Specification

	NEED #	PRODUCT NEED	sco	DRE
1	The Power Grabber	Can Squeeze Grabber Trigger	5	
2.	The Power Grabber	Adjustable applied force to trigger	5	
3	The Power Grabber	Operates in the rain and harsh weather conditions	2	
4	The Power Grabber	Is automatic (motorized)	5	
5	The Power Grabber	Is a manageable weight	5	
6	The Power Grabber	It is ergonomic for people with arthrogryposis	5	
7	The Power Grabber	Can be used for variously designed power grabbers	3	
8	The Power Grabber	Is safe for client use	5	
9	The Power Grabber	It is aesthetically appealing	1	
10	The Power Grabber	ls durable	3	
11	The Power Grabber	Is battery efficient	3	
12	The Power Grabber	Is portable	5	

Target Specifications

METRIC #	METRIC	UNIT	MARGINAL	TARGET
1	Weight of the Handle	Kilograms	0.9	0.5
2	Grip Force (needed for human)	Newtons	4	2
3	Force applied to Handle	Newtons	16	>32
4	Object Weight (that can be lifted)	Newtons	2.25	>4.5
5	Battery Life	Hours	5	8
6	Cost	Canadian Dollars	150	
genie.uOttawa.ca l	engineering.uOttawa.ca			

Université d'Ottawa | University of Ottawa

Benchmarking

- There is no product on the market similar to one the client wants us to make.
- User benchmarking:
- Majority commented on the great portability of the device.
 Its comfort/ergonomics and ability to grab various objects are areas that could improve.

cost	\$32.99	\$35.22	\$59.99
length	26-32 inches	32 inches	40 inches
One-handed	Yes	Yes	Yes
Lightw eight	Yes	Yes	Yes
Simple trigger (pistol grip)	No	Yes	Yes
Motorized handle	No	No	No

Phase 2: Design Concepts

Designs

Université d'Ottawa 🕴 University of Ottawa

Design

Metric #	Need #	Metric	Unit	Marginal	Target	Final Concept
1	6	Weight of the Grabber	Pounds	1.7	1	Yes
2	8	Length of the Grabber	Inches	16	20	Yes
3	2	Force applied to object	Pounds	1	3	Yes (but may be difficult to keep within boundaries)
4	10	Object Weight	Pounds	1	3	Yes
5	14	Battery Life	Hours	5	8	Yes
6	5	Motor Speed	RPM	N/a	N/a	N/a (we can buy a suitable motor)

A Setback

Design Concepts

Decision Matrix

- 5 is most Important
- 1 is least Important

Criteria	Linear Actuator	Rotary Linkage	Lead Screw Stepper Motor
Size of System	4	2	3
Weight	4	2	4
Force Applied to Handle	5	3	3
Cost	2	3	3
Total	15	10	13

CAD Model

Electrical Concept

Final Decision

The Math

- Force to Squeeze the Trigger
- 1.6kg x 9.81m/s²=15.696N (one and half water bottles full)
- Lead Screw =16N
- Linear Actuator=60N

12656.56 384 men

Feasibility Study

Strengths

- Low grip strength
- High amount of support
- Ergonomic
- Lift variety of objects

Weaknesses

- Does not lift heavy objects
- Does not apply to all grabbers

	Feasil Study	bility
	Technical	Portable
2	Economic	Recyclable
ΔŢΔ	Legal	Unique product
¢	Operational	Operates as intended
	Scheduling	Three months

Université d'Ottawa University of Ottawa

Bill of Materials

ltem #	Name	Description	Qty	Cost	Total cost	Source
1	Outer case for Arduino	Laser Cut Wooden Box	1	3.00	3.00	MakerLab
2	Outer case for linear actuator	Laser cut wooden box	1	5.00	5.00	MakerLab
3	Arduino	Arduino Uno	1	9.00	9.00	arduino
5	Batteries	Reachable batteries	1	49.99	49.99	Battery 12V Rechargeable
6	Flange	Plastic 3D modeled	1	0.40	0.40	3D print
7	Linear actuator	Linear actuator	1	32.95	32.95	amazon
8	Strap for Handle	Buckle to keep grabber in place	1	1.99	1.99	
9	Button	Button from MakerLab	1	0.50	0.50	MakerLab
10	PVC Pipe (to support button)	Pipe for handle grip	1	0.40	0.40	MakerLab
14	Wires	Wires to connect motor shield with actuator	8	1.00	1.00	MakerLab
15	Shield	Motor Shield	1	20.00	20.00	MakerLab
16	Glue	Super Glue	1	6.00	6.00	Glue
17	Screws	0.25 inch	4	0.10	0.40	MakerLab
18	Nuts	0.25 inch	4	0.30	1.20	MakerLab
Total project cost: \$131.83 Off aV						

genie.uOttawa.ca i engineering.uOttawa^{Total project cost:}

First Prototype

Second Prototype

Third Prototype

Phase 3: Business Model

AUG UN

Business Model

• The razor-blade model was decided to be the best.

ICCES

- Initial product would be sold at a deficit.
- Updated product would be sold for profit.

Triple Bottom Line Business Model

Economics

	1st Year		2nd Year		3rd Year	
Sales (Revenue)	\$225*2500 =	\$562,500	\$225*3000 =	\$675,000	\$250*3,150 = \$787,50	00
Cost of Goods sold	\$150*2750+\$160000 =	\$572,500	\$150*3000+\$160000 =	\$610,000	\$160*3,000+\$160000 = \$640,00	00
Gross profit		-\$10,000		\$65,000	\$147,50	00
Operating expense:	\$3000 + \$13,476 + \$18,000+\$15000 =		\$3000 + \$13,476 + +\$15000=		\$3000 + \$13,476 + +\$15000 =	
		\$49,476		\$31,476	\$31,47	<i>'</i> 6
Marketing		\$2000		\$2500	\$150	00
Total operating expenses		\$51,476		\$33,976	\$32,97	<i>'</i> 6
Operating income		-\$61,476		\$31,024	\$81,54	18
genie.uOttawa.ca engineering.uOttawa.ca						

Phase 4: Future Endeavors

Communication with the client is vital

Lessons Learned

Failure is expected and iteration is necessary

Group communication and dynamic is key to success

Improvements for The Helping Hand

• Fasteners

- Secure hold on the grabber
- Improve the wrist straps

Thank You for Listening

Any Questions?