

u Ottawa <u>GNG 2101</u>

A 2.3 One-Handed Walker Steering

By: Defne, Ekin, Jérémie, Jorge, and Saheel

<u>Client meetings</u>

3 client meetings throughout the semester.

- Input
- General feedback
- Updates on the requirements
- Discuss possible new ideas (iterations)

Problem analysis

• Client Statements

- 1. I want the device to be long-lasting, be permanent
- 2. I want to be able to walk over snow banks
- 3. I want the device to be detachable and versatile
- I want the device to be stable, balance is key
- I want the device to be able to fold on itself...

• Translated customer needs

#	Need	Imp
1	The device lasts a long time	4
2	The device can endure extreme weather conditions (snow, rain, cold and heat)	3
3	The brackets can be on installed easily on any walker	5
4	The fasteners fit tight	4
5	The device allows an easy installation without making permanent changes to the walker	3

"A need exists for walker users with one operational arm to safely and easily steer the walker with a straightforward, attachable device that is versatile, durable, and cost effective."

Metrics

Needs List

Metric #	Needs #	Metric	Unit
1	9	Force required to use device	Ν
2	9	Manoeuvrability (Turning Radius)	m
3	9	Agility (Rotational speed)	deg/s
4	8	Total weight	kg
5	7	Dimension	m^3
6	2,7,1	Reliability (MTBF)	h
7	1,8	Material	N/A
8	3,5	Detachability (Time to assemble)	min
9	4,9,10	Ease of use	N/A
10	6	Cost	CAD

Benchmarking

Specification	Importance (Weight)	Nitro Euro Style Walker Rollator.	Electric Wheelchair	Manual Wheelchair
Make		Drive Medical	Fold and Travel	Medline
Cost (CAD)	5	400	2900	287
Load Limit (N)	3	1300	1470	1332.8
Material	2	Aluminium	Aluminium Aluminium	
		70.5 x 58.4 x 92.2	72.2 x 62.5 x 95.5	80 x 64.8 x 92.7
Dimension (cm)	3	ст	cm	ст
Ease of Installation	4	3	2	2
Force required (N)	5	10	1	130
Manoeuvrability	4	3	2	1
Agility	3	1	3	2
Reliability	4	3	1	2
Total		83	60	67

No previous attempts found

Benchmarking done for <u>components</u> and <u>devices</u> <u>with similar purpose</u> (steering)

Target Specifications

Metric #	Functional Requirements	Relation	Value	Unit	Verification Method
1	Force required to use device	<	10	N	Test
2	Manoeuvrability (Turning Radius)	<	2	m	Test
3	Agility (Rotational speed)	>	30	deg.s ⁻¹	Test
#	Non-Functional Requirements	Relation	Value		
4	Total weight	<	8.5	kg	Test
5	Dimension	<	0.55	m ³	Test
6	Reliability (MTBF)	>	2500	h	Estimate
7	Material	-	Aluminium	N/A	Analysis
8	Detachability (Time to assemble)	<	20	min	Test
9	Ease of use	-	-	N/A	Test
#	Constraints	Relation	Value	Unit	
10	Cost	<	100	CAD	Given
11	Time to complete project	<	1/12/2022	Date	Given

Functional decomposition

Decomposition of all needs into logical separable Tasks

Decision Matrix

Concept Options (Part 1 of 3)											
Selection criteria	Weight	D Cor	efne ncept 1	D Coi	efne ncept 2	D Cor	efne ncept 3	Jé r Cor	r émie ncept 1	Jér Con	émie cept 2
Force required	0.15	5	0.75	9	1.35	8	1.2	5	0.75	10	1.5
Maneuverability	0.13	5	0.65	7	0.91	8	1.04	4	0.52	8	1.04
Cost	0.13	5	0.65	6	0.78	6	0.78	5	0.65	1	0.13
Total weight	0.15	5	0.75	4	0.6	5	0.60	5	0.75	4	0.60
Dimension	0.11	5	0.55	3	0.33	6	0.66	7	0.77	7	0.77
Reliability	0.11	5	0.55	5	0.55	6	0.66	7	0.77	3	0.33
Material	0.07	5	0.35	4	0.35	5	0.35	5	0.35	3	0.21
Ease of installation	0.15	5	0.75	6	0.9	5	0.75	4	0.6	3	0.21
Total Score Ref. = 5			5.77		6.04		5.16		4.79		

	Concept Options (Part 2 of 3)										
Selection criteria	Weight	Jér Con	rémie Icept 3	Jo Con	orge cept 1	Jo Cor	orge icept 2	Jo Cor	orge acept 3	Sa Cor	heel heept 1
Force required	0.15	10	1.5	4	0.6	10	1.5	5	0.75	10	1.5
Maneuverability	0.13	8	1.04	5	0.65	7	0.91	7	0.91	8	1.04
Cost	0.13	1	0.13	7	0.91	2	0.26	5	0.65	4	0.52
Total weight	0.15	3	0.45	5	0.75	3	0.45	4	0.60	5	0.75
Dimension	0.11	4	0.44	5	0.55	1	0.11	4	0.44	5	0.55
Reliability	0.11	1	0.11	6	0.66	1	0.11	6	0.66	4	0.44
Material	0.07	1	0.07	1	0.07	2	0.14	3	0.21	5	0.35
Ease of installation	0.15	1	0.15	3	0.45	1	0.15	3	0.45	2	0.3
Total Score	Total Score		.89	4	.64	3	6.63	4	.67	5	5.45

	Concept Options (Part 3 of 3)										
Selection criteria	Weight	Sa Con	heel cept 2	Sa Con	heel cept 3	Sarj Cor	p Ekin acept 1	Sar Coi	p Ekin ncept 2	Sar Cor	p Ekin ncept 3
Force required	0.15	10	1.15	4	0.6	4	0.6	5	0.75	10	1.50
Maneuverability	0.13	7	0.91	6	0.78	6	0.78	3	0.39	6	0.78
Cost	0.13	8	1.04	1	0.13	5	0.65	5	0.65	1	0.13
Total weight	0.15	7	1.05	2	0.3	7	1.05	2	0.30	1	0.15
Dimension	0.11	7	0.77	2	0.22	7	0.77	5	0.55	3	0.33
Reliability	0.11	8	0.88	4	0.44	2	0.22	5	0.55	4	0.44
Material	0.07	6	0.42	3	0.21	5	0.35	5	0.35	5	0.35
Ease of installation	0.15	9	1.35	1	0.15	5	0.75	1	0.15	2	0.30
	7	.57	2	.83	5	5.17	3	3.69	3	8.98	

Final Concept Decision

CONCEPT 2: CABLE DIFFERENTIAL BRAKING

Positives VS

- Low price point
- Ease of installation
- Reliability
- Ease of Use

Negatives

- Complexity
- Maneuverability
- Weight

Bill of materials

Bill of Materials									
Material required	Amount	Cost (shipping included)	Link						
Brake wire with black tubing	10 pcs	\$12.29	https://amzn.to/3MfO 362						
Plastic Brake Handles	2 pcs	\$15.99	https://amzn.to/3CKc w0n						
Galvanized Steel Pipe 6063-T6	1 pc	\$32.49	https://amzn.to/3fUZ OTu						
Sail tie Optiparts	1 pack	\$19.35	https://bit.ly/3T5VCh R						
Scotch-Mount ¹ / ₂ " x 15"	1 pack	\$15.50	https://amzn.to/3fSzG IW						
	Total Cost =	\$95.62							

- <u>Preliminary</u>
- Under \$100 dollars
- Shipping included
- Additional material considered*

Economics & Business Model

Net Income Analysis (PV)									
Year	Tot	al Revenues	Total Costs	N	let Income				
1	\$	12,500.00	\$ 18,811.25	\$	(6,311.25)				
2	\$	27,267.77	\$27,685.95	\$	(418.18)				
3	\$	58,593.54	\$47,708.49	\$	10,885.05				

Net Income NPV (for 3 years) ---> \$ 4,155.62

Key Partners Warehouse and delivery workers Assembly workers assemble the product. Insurance company	Key Activities Marketing R&D Customer service Production Key Resources Materials for the product: Brake wires, Steel bar, bike brakes and attachment blocks. Warehouse/asse mbly workers	Value Propositions We are presenting a single handed walker steering device which is easily attachable/detacha ble to different types of walkers. This device will facilitate the use of the walker when the user has only one operational arm.	Customer Relationships Direct relationship Personal assistance Channels Online/website Amazon Store eBay	Customer Segments Customers who are: walker users, with one functioning arm and who have mobility difficulties.
Cost Structure Marketing and sale Materials Product Developm	ent	Revenue streams Sales Sponsorships Services		

First Prototype -> Low fidelity

Testing -> (focused & analytical)

1. Brake displacement testing

2. Cross Bar Weight Distribution Testing

Figure 1

Second Prototype -> medium fidelity

• Physical

• Medium Fidelity

• Reuse Materials For Final Product

Testing

Subsystems compatibility testing

Fastener testing

Final Product & Demonstration

Future of this Design

