GNG 1103 [G]

Engineering Design

Deliverable F: Prototype I and Customer Feedback

Team 14

Salma Ahmed - 300168559

Scabency Adolphe - 300332534

Abdel Ahmed - 300290665

November 15, 2022

University of Ottawa

Introduction

The deliverable F will outline our prototype and the feedback that we received on our main concept designs by the client. We will also establish a test plan for the first prototype using the suggestions received. Finally, we will discuss the results obtained from our prototype and elaborate on new objectives for the next prototype.

Customer Feedback

At the first client meeting, we discussed about our main concept ideas and, the customers told us that it was a great one and that we should continue working on it. However, he told us that we needed to make sure that we will use more than one camera. He suggested that we start by recording with one camera and figure out the logistics to later, add the other cameras. We also talked about how we were going to add the 3D virtual aspect in our project via Unity and OpenCV. We were contemplating about the position of the ball in the virtual court and, how we were going to dimension the court from a 2D point of view to 3D point of view on Unity. The client said that there was multiples website or project online that you could guide us, and he also gave us the choice to choose the (0,0,0) position in our interface on Unity.

First prototype

The prototype had two objectives for us to work on the basics before adding new features to the second prototype. Firstly, we wanted to find a way to detect the padel ball on OpenCV and Unity. We were able to detect the ball using its colour. For the next step, we want to detect the ball based on its colour and shape and find its position. Secondly, we wanted to detect the players using OpenCV and reproduce their movement on Unity. We were able to do the detection from a 2D point of view. However, the customers deemed that we did not need to detect the player because there is a module on Unity that could identify the players for us to some extent. He advises us to focus more on the ball's detection and its position.

Table 1 - Test Plan and Results for Prototype I

Test	Objectives	Description of	Expected Results	Estimated	Analysis / Customer
	(Why)	the prototype (What)	(How)	Test Duration (When)	Feedback
1	Ball	Write a code on	The ball should	October 24-	The team was able to
	detection	OpenCV to	appear on Unity,	October 29	do the ball detection
		detect the	and it should		using the ball colour,
		padel ball	follow the ball		however it will also
		based on its	movement and		be safer to do it
		colour and its	reciprocate the		based on the shape of
		movement.	same movement.		the ball. Next step is
					to find the position of
					the ball using a
-					reference point.
2	Players'	Write a code on	Unity should	October 24-	The team was able to
	detection	OpenCV to	detect the	October 29	only detect one
		detect the	players and		player and follow its
		players and	follow its		movement. Next step
		follow its	movement.		would see if we can
		movement.			find others
					alternative to do so to
					detect the two
					players effectively
					and accurately.
3	Record 3D	Find an	Record a 3D	October 24-	The team was not
	video	application or a	video via an	October 29	able to record a 3D
		software that	iPhone and		video because the
		could help us	Android to later,		tools and the
		directly film a	add on Unity.		software used to film
		padel ball game			the video was over
		from a 3D point			the budget hence, it
		of view.			did not respect our
					design criteria.

Image 1 - Code for the ball detection for Prototype I

```
import cvzone
from cvzone.ColorModule import ColorFinder
import cv2
import socket
cap = cv2.VideoCapture('test copy.mov')
cap.set(3, 1280)
cap.set(4, 720)
success, img = cap.read()
h, w, _ = img.shape
myColorFinder = ColorFinder(False)
hsvVals = ('hmin': 19, 'smin': 79, 'vmin': 83, 'hmax': 90, 'smax': 255,
'vmax': 255}
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
serverAddressPort = ("127.0.0.1", 5056)
while True:
success, img = cap.read()
imgColor, mask = myColorFinder.update(img, hsvVals)
imgContour, contours = cvzone.findContours(img, mask)
imgStack = cvzone.stackImages([img, imgColor, mask, imgContour], 2, 0.5)
if contours:
    data = contours[0]['center'][0],\
         h-contours[0]['area'])
    print(data)
        sock.sendto(str.encode(str(data)), serverAddressPort)
    cv2.imshow("Image", imgStack)
    cv2.waitKev(1)
```

In this code, we were able to detect and track the padel ball with its colour. As we can see from line 11-12, we have entered the values of the colour that we wanted to track and detect and from line 5, we were able to download a video on Unity. We took a video of a moving tennis ball and this code allowed to track the padel ball on Unity via the video.

Table 2 - Test Plan for Prototype II

Test	Objectives	Objectives Description of the Expecte		Estimated
	(Why)	prototype (What) (How)		Test Duration
				(When)
1	Ball Position	Write a code on OpenCV to	The ball should appear on	November 8-
		detect the padel ball and	Unity, and it should follow	November 18
		find its position from a	the ball movement more	
		reference point.	accurately than the first	
		prototype and recipro		
			the same movement. It	
			should also tell the (x,y,z)	
			position from a reference	
			point at all times.	
2	Interface on	Recreate a padel ball court	The simulation should	November 8-
	Unity	on Unity and simulate a	accurately represent a	November 18
		game for accuracy.	padel game and the	
			position of the ball should	
			be always known. The	
			measurement of the padel	
			ball court on Unity should	
			be like the real-life court	
			on smaller scale.	

Conclusion

In summary, we presented our test plan and our results for the prototype I. Overall, we accomplish 2 out of the 3 tests that we wanted to do. We were able to do an analysis of our overall project to with client and we made the necessary change to achieve our desired results. We were also able to showcase one example of our codes for the ball detection. For the next step, we were able to formulate the test plan for the second prototype and explain our expected results. Finally, we were able to schedule and prepare our team for the next prototype on Wrike.