Project Deliverable EPresentation
 Chelse Rose Vadakkeveettilan Hilariyos Vivethen Balachandiran Yassine Ouloum Laura Keryakes
 Jiayi Ma

Agenda

Customer Needs	Initial Project Plan
Benchmarking	Client Meet \#2 Feedback
Target Specifications	Development of Prototype
Concepts	Current Prototype \& Testing
Decision matrix	Client Meet \#3 and Future
Feasibility Study	Plans

What is our project?

- Product that measures athlete performance
- Users: athletes, coaches or anyone looking to monitor or improve their performance

Client Needs

Key Takeaways from Client Meet 1:

1. The product detects and collects measurable data related to sports performance.
2. The product has no effect on the user's ability to perform.
3. The product analyzes and categorizes data and outputs it to a user-friendly centralized platform.
4. The product is lightweight, portable, durable and waterproof.

Problem Statement

"Athletes and coaches playing tenifis are looking for a portable, durable and waterproof product that effectively measures theirperformance and outputs it via a user-friendly platform that allows constant comparison of statistics amongst themselves and their team."

Benchmarking - Current Products in the Market

Watch Tracker - for Running

Easy set up Centralization of data on app App stores daily totals for up to 30 days Waterproof Durable Adaptable to
parasports

GPS Performance Tracker - for Soccer (STATSports)

Figure 3.a

3.b

- Easy set up
- Centralization of data on app
- Waterproof
- Durable
- Adaptable to parasports

Installed Club Sensors (Garmin Approach CT-10)

- Easy set up

Data sorting included

- Centralization of data on app
- Waterproof
- Durable

Target Specifications

Metric	Unit	Marginal value	$\frac{\text { Ideal }}{\text { value }}$	Reason for choices
Speed measurable	m / s	$0-118.33$	$0-150$	Cover the world's maximum badminton hitting speed to avoid unexpected situations.
Impact force measurable	N	>280	>300	Simplified estimation done according to the maximum and minimum speed measurable in Metric \#1 Conducted through testing (Nagwa).
Weight	g	>80	$80<$	Light and convenient; It should be a seamless device.
Size of device	cm 3	<9	Small and fits the racket.	
Life expectancy	Years	>1	>3	The battery life is long enough to be used during multiple seasons and the battery is replaceable.

Decision matrix

Selection criteria	Racket: Detachable	Racket: Built-in	Gloves
Speed measurable	5	5	4
Impact force measurable	5	5	4
Weight	5	2	4
Size of device	4	1	3
Life expectancy	3	3	4
Total score		16	19

Therefore, the Group Concept will be a detachable sensing system mounting on a tennis racket.

Strengths:

- Inexpensive and Affordable
- Lightweight and Compact
- Sensitive and Accurate
- Data visualization

Weaknesses:

- Difficult installation/ disassembly process
- Few target clients
- Short product development period

TELOS:

> Technical: Technical support in software, but still lack the knowledge of hardware.
$>$ Economic: R\&D expenses slightly exceeded expectations.
$>$ Legal: Make sure developer-friendly tools and low-cost deployment.
$>$ Operational: Rational task allocation and On-chain governance.
> Scheduling: Deadline is Nov. 30, and a three-month period is short for R\&D work.

Group Goneents

Initial Group Concept

Client Meet \#2

- Feedback for Design Improvement
- Preferred use of bluetooth chips Advised use of more sensors positioned around the racquet
- An advertisement or an application alongside the product.
O Output of data to the user should be continually updated.
- Data is outputted in a user-friendly manner

Group Concept After Client

 Meet 2

Project Plan

Project Plan

X: 1 week
\square : Milestone
Issues encountered:

- Task \#4: Sickness
- Task \#4: Uncertainty about final design
- Task \#5: Review of final design

Project Plan

Project Plan

X: 1 week
: Milestone

Issues expected:

- Task \#6: Delay in components arrival
- Sickness or member absence

Prototype 1

Using Gyroscope and Accelerometer

- Acceleration Input

We want:

- Peak Velocity (at what position \& time)

How does it work?

Create a loop

Calculate
current velocity

If it's higher
replace it

Time To Test!	Acceleration	0	+2	+3	-1	+1.5
	Time	0	1	2	4	5

Kinematic Equation: $\mathbf{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\mathrm{a} * \Delta \mathrm{t}$

Initialize variables
Set V_{i}, V_{f}, a, t, peakV $=0$

2

Calc current velocity (V_{f})
Use data table and equation

$$
v_{f}=0+(0 * 0)=0
$$

Time To Test!	Acceleration	0	+2	+3	-1	+1.5
	Time	0	1	2	4	5

Kinematic Equation: $\mathbf{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\mathrm{a} * \Delta \mathrm{t}$

Change peakV and V_{i} ?
$\mathbf{V}_{\mathrm{f}}=\mathbf{0}$, so peakV still 0
$V_{i}=V_{f}=0$

And repeat...
For all data table values

Time To Test!	Acceleration	0	+2	+3	-1	+1.5
	Time	0	1	2	4	5

Kinematic Equation: $\mathbf{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}+\mathrm{a} * \Delta \mathrm{t}$

Row 2:
$\mathrm{V}_{\mathrm{f}}=0+(2 * 1)=2 \quad \mathrm{~V}_{\mathrm{f}}=2+(3 * 1)=5$ peakV $(0)<V_{f}(2) \rightarrow$ peakV $(2)<V_{f}(5) \rightarrow$
peakV = 2
peakV = 5
$V_{i}=V_{f}=5$

$$
v_{i}=v_{f}=3
$$

Row 5: $\quad \mathbf{V}_{\mathrm{f}}=3+\left(1.5^{*} 1\right)=4.5$ peakV $(5)>V_{f}(4.5) \rightarrow$ peakV $=5$

Potential Limitations

- Requires high frequency measurements
\square Assuming constant acceleration between intervals
- $X, Y, \& Z$ axis may make things more complex

Next Steps

Objectives:

- Update Prototype 1
- Prototype 2
- Final Prototype

