Project **Deliverable E-**Presentation

Chelse Rose Vadakkeveettilan Hilariyos Vivethen Balachandiran Yassine Ouloum Laura Keryakes Jiayi Ma

Agenda

Customer Needs Benchmarking Target Specifications Concepts Decision matrix Feasibility Study

Initial Project Plan Client Meet #2 Feedback Development of Prototype Current Prototype & Testing Client Meet #3 and Future Plans

What is our project?

- Product that measures athlete performance
- Users: athletes, coaches or anyone looking to monitor or improve their performance

Client Needs

Key Takeaways from Client Meet 1:

- 1. The product detects and collects measurable data related to sports performance.
- 2. The product has no effect on the user's ability to perform.
- 3. The product analyzes and categorizes data and outputs it to a user-friendly centralized platform.
- 4. The product is lightweight, portable, durable and waterproof.

Problem Statement

"Athletes and coaches **playing tennis** are looking for a portable, durable and waterproof product that effectively measures their performance and outputs it via a user-friendly platform that allows constant comparison of statistics amongst themselves and their team."

Benchmarking - Current Products in the Market

Watch Tracker - for Running (FitBit)

Easy set up Centralization of data on app App stores daily totals for up to 30 days Waterproof Durable Adaptable to parasports

Playmaker - for Soccer

 Easy set up
Data sorting included
Centralization on app
Waterproof

Durable

Training With the Ball Harm Considerable Total and the set of th

e 1: https://images.app.goo.gl/cFvBTv1aUzP64fow9

Figure 2: https://images.app.goo.gl/IAQR1NKZqrRgG79o8

GPS Performance Tracker - for Soccer (STATSports)

- Easy set up
- □ Centralization of data on app
- ❑ Waterproof
- Durable
- Adaptable to parasports

Installed Club Sensors (Garmin Approach CT-10)

- Easy set up
- **D**ata sorting included
- Centralization of data
 - on app
- Waterproof
- **D**urable

igure 4. https://images.app.goo.gl/dCvubkroaUY47pzk9

Target Specifications

<u>Metric</u>	<u>Unit</u>	<u>Marginal</u> <u>value</u>	<u>Ideal</u> <u>value</u>	Reason for choices
Speed measurable	m/s	0-118.33	0-150	Cover the world's maximum badminton hitting speed to avoid unexpected situations.
Impact force measurable	N	>280	>300	Simplified estimation done according to the maximum and minimum speed measurable in Metric #1 Conducted through testing (Nagwa).
Weight	g	>80	80<	Light and convenient; It should be a seamless device.
Size of device	cm3	<9	7.5<	Small and fits the racket.
Life expectancy	Years	>1	>3	The battery life is long enough to be used during multiple seasons and the battery is replaceable.

Decision matrix

Selection criteria	Racket: Detachable	Racket: Built-in	Gloves
Speed measurable	5	5	4
Impact force measurable	5	5	4
Weight	5	2	4
Size of device	4	1	3
Life expectancy	3	3	4
Total score	22	16	19

Therefore, the Group Concept will be a detachable sensing system mounting on a tennis racket.

Feasibility Study

Strengths:

- Inexpensive and Affordable
- Lightweight and Compact
- Sensitive and Accurate
- Data visualization

Weaknesses:

- Difficult installation/ disassembly process
- Few target clients
- Short product development period

TELOS:

- Technical: Technical support in software, but still lack the knowledge of hardware.
- **Economic:** R&D expenses slightly exceeded expectations.
- Legal: Make sure developer-friendly tools and low-cost deployment.
- Operational: Rational task allocation and On-chain governance.
- Scheduling: Deadline is Nov. 30, and a three-month period is short for R&D work.

Group Concepts

Initial Group Concept

Client Meet #2

- Feedback for Design Improvement
- Preferred use of bluetooth chips Advised use of more sensors positioned around the racquet
- An advertisement or an application alongside the product.

- Output of data to the user should be continually updated.
- Data is outputted in a user-friendly manner

Group Concept After Client Meet 2

#	Task						Ī	Гime						Owner
		Мс	onth 1		Mo	nth 2		Mo	nth 3		Мо	nth 4		
1	Team contract & project plan & client meeting 1 (PD-A)	X												All
2	Client needs & Problem definition (PD-B)		х											Jemma
3	Conceptual design & client meeting 2 (PD-C)			x										Vive
4	Detailed design & Prototype 1 (PD-D)				Х									Laura
5	Project progress presentation (PD-E)					X								Yassine

X : 1 week X : Milestone

Issues encountered:

- Task #4: Sickness
- Task #4: Uncertainty about final design
- Task #5: Review of final design

#	Task					٦	Гime						Owner
		Мс	onth 1	Мо	nth 2		Mo	nth 3		Мо	nth 4		
6	Prototype 2 (PD-F)					x							Chelse
7	Business model & Economics report (PD-G)							x					Jemma
8	Design day pitch & Final prototype & Client evaluation (PD-H)								x				Vive
9	Video & User Manual (PD-I)									x			Laura
10	Final presentation (PD-J)									x			Yassine

X : 1 week : Milestone

Issues expected:

- Task #6: Delay in components arrival
- Sickness or member absence

Prototype 1

Using Gyroscope and Accelerometer - Acceleration Input

We want:

- Peak Velocity (at what position & time)

How does it work?

Create a loop

Calculate

current velocity

If it's higher

replace it

Time To Test!

Acceleration	0	+2	+3	-1	+1.5
ſime	0	1	2	4	5

Kinematic Equation: $V_f = V_i + a * \Delta t$

2

Initialize variables

Set V_i , V_f , a, t, peakV = 0

Calc current velocity (V_f) Use data table and equation $V_f = 0 + (0 * 0) = 0$

Time To Test!

Acceleration	0	+2	+3	-1	+1.5
Fime	0	1	2	4	5

Kinematic Equation: $V_f = V_i + a * \Delta t$

Change peakV and V_i ? $V_f = 0$, so peakV still 0 $V_i = V_f = 0$

And repeat...

For all data table values

Time To Test!	Accele	ration	0 +2		+3	-1	+1.5	
	Time		0	1	2	4	5	
	Kinen	natic Equ	uation: V _f	= V _i + a	* ∆t			
Row 2:		Row 3:			Row 4:			
$V_{f} = 0 + (2 * 1)$ peakV(0) < $V_{f}(2)$ peakV = 2 $V_{i} = V_{f} = 2$	= 2 ->	V _f = 2 peakV(2 peakV = V _i = V _f =	+ (3 * 1) 2) < V _f (5) = 5 5	= 5 >	$V_f = 5 +$ peakV(5) peakV = $V_i = V_f = 3$	(-1 * 2) > V _f (3) - 5	= 3 ->	

Row 5: $V_f = 3 + (1.5 * 1) = 4.5$

$$peakV(5) > V_{f}(4.5) -> peakV = 5$$

22

Potential Limitations

- **Requires high frequency** measurements
- Assuming constant acceleration between intervals
- X, Y, & Z axis may make things more complex

□ ▶ □ ▶ ▲ 57% ■ 5:14 PM ↑ https://ml.t-mobile.com 2
00000
You are offline. Try: • Turning off airplane mode • Turning on mobile data or Wi-Fi • Checking the signal in your area ERR_INTERNET_DISCONNECTED

Next Steps

Objectives:

- Update Prototype 1
- Prototype 2
- Final Prototype

