
Deliverable H

Alexandre, Boyu, Leo, Tobaogo and Samuel

March 26, 2023

Link to Wrike:
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=E6Mzpnlt8sdrCVAx
LINJEhO4yeHKnxJM%7CIE2DSNZVHA2DELSTGIYA

https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=E6Mzpnlt8sdrCVAxLINJEhO4yeHKnxJM%7CIE2DSNZVHA2DELSTGIYA
https://www.wrike.com/frontend/ganttchart/index.html?snapshotId=E6Mzpnlt8sdrCVAxLINJEhO4yeHKnxJM%7CIE2DSNZVHA2DELSTGIYA


Table of Contents:
Prototype 3 (Concept): 3
Prototype (Overall) 3
Testing Outline: 4

Table 1: Testing Dates, Descriptions of Why, How, When: 4
Figure 1: Testing the Dust Sensor Measured in Ppm through Second 5
Figure 2: Pictures and Videos Testing of Level Sensor 5
Figure 3: How the Two Sensors Work Together 6
Figure 4: Sketch of Entire Set up 6
Figure 5: Level Sensor Code 7
Figure 6: Dust Sensor Code 9
Figure 7: Entire code connecting two sensors 13

Target Specifications Changes 13
Feedback and Comment 13
Target Specifications 13
Bill of Materials 14

Page 2 of 14



Prototype 3 (Concept):
Prototype 3 is not to create another sensor or model of an object, the 3rd prototype is to simply
create a line of code that incorporates both the level and dust sensor. The code will have both
sensors meeting the range of conditions for the alert to notify the clients or workers.

The code will meet conditions like:

1. If: Dust level > 10 ppm and Silo 1 level < 1500kg,

But: Silo 2 level > 1000 kg and Silo 3 level > 1000 kg

Response: Stop output from silo 1.

2. If: Dust level > 10 ppm

But: Silo 1 level > 1500kg, Silo 2 level > 1000kg, and Silo 3 level > 1000 kg,

Response: Slow down the output of silos until Dust level <10 ppm

Dust from silo 1 will eventually clear out. Slowing down all silos will reduce stress on the filter.

3. If: Dust level > 10 ppm and Silo 3 level > 2000kg,

But: Silo 1 level > 2000kg and Silo 2 level > 2000kg

Response: Stop output from silo 3.

Prototype (Overall)
The assembly of our entire prototype, including, level sensor (physical & analytical) dust sensor
(physical & analytical)

Page 3 of 14



Testing Outline:

Table 1: Testing Dates, Descriptions of Why, How, When:

Test ID Test
Objective

Description of
Prototype used and of
Basic Test Method

Description of
Results to be
Recorded and how
these results
will be used

Estimated
Test
duration and
planned start
date

1 Level sensor:
To detect low
silo

The level sensor gives
the level at which the
silos are at.

The sensor provides
real-time data to the
control system to be
evaluated.

1 day
3/18/2023

2 Dust sensor:
To detect
high dust
levels

The dust sensor
measures the amount of
dust the filter is
cleaning.

The sensor provides
real-time data to the
control system to be
evaluated.

1 day
3/18/2023

3 Program
(code):
To gather
data from
level and dust
sensors and
provide
feedback.

The program gets data
from both sensors and
evaluates it to give the
appropriate response.

The program
compares data from
both sensors and
responds according
to the conditions that
are met.

1 day
3/19/2023

4. Physical test
of all
components

Experimenting silo
levels with sand in a
bucket, Dust levels
using dust(flour), and
making sure the
program responds to
those conditions.

The physical test is
used to simulate
conditions or cases
that can occur during
normal operations.

1 day
3/25/2023

5. 3D print a
box that fits
the dust
sensor

Make sure the level
sensor is organized
properly and contained

Have the dimensions
of the box and
presented to the
clients

1day
3/26/2023

Page 4 of 14



Figure 1:

Testing the Dust Sensor Measured in Ppm through Second

Figure 2: Pictures and Videos Testing of Level Sensor

VIDEO IN SEPARATE SUBMISSION

Page 5 of 14



Figure 3: How the Two Sensors Work Together

Figure 4: Sketch of Entire Set up:

Page 6 of 14



Figure 5: Level Sensor Code:
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2); // I2C address 0x3F, 16 column and 2

rows

int trigPin = 9; // TRIG pin

int echoPin = 8; // ECHO pin

float duration_us, distance_cm;

Page 7 of 14



void setup() {

lcd.init(); // initialize the lcd

lcd.backlight(); // open the backlight

pinMode(trigPin, OUTPUT); // config trigger pin to output mode

pinMode(echoPin, INPUT); // config echo pin to input mode

}

void loop() {

// generate 10-microsecond pulse to TRIG pin

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

// measure duration of pulse from ECHO pin

duration_us = pulseIn(echoPin, HIGH);

// calculate the distance

distance_cm = 0.017 * duration_us;

lcd.clear();

lcd.setCursor(0, 0); // start to print at the first row

lcd.print("Distance: ");

lcd.print(distance_cm);

delay(500);

}

Page 8 of 14



Figure 6: Dust Sensor Code:
/*

Interfacing Sharp Optical Dust Sensor GP2Y1014AU0F with Arduino

*/

#define measurePin 0 //Connect dust sensor to Arduino A0 pin

#define ledPower 7 //Connect 3 led driver pins of dust sensor to Arduino D2

int samplingTime = 280; // time required to sample signal coming out of the sensor

int deltaTime = 40;

int sleepTime = 9680;

float voMeasured = 0;

float calcVoltage = 0;

float dustDensity = 0;

void setup(){

Serial.begin(9600);

pinMode(ledPower, OUTPUT);

Page 9 of 14



}

void loop(){

digitalWrite(ledPower, LOW); // power on the LED

delayMicroseconds(samplingTime);

voMeasured = analogRead(measurePin); // read the dust value

delayMicroseconds(deltaTime);

digitalWrite(ledPower, HIGH); // turn the LED off

delayMicroseconds(sleepTime);

// 0 - 5V mapped to 0 - 1023 integer values

// recover voltage

calcVoltage = voMeasured * (5.0 / 1024.0);

// linear equation taken from http://www.howmuchsnow.com/arduino/airquality/

// Chris Nafis (c) 2012

dustDensity = 170 * calcVoltage - 0.1;

Page 10 of 14



Serial.println(dustDensity); // unit: ug/m3

delay(1000);

}

Page 11 of 14



Figure 7: Entire code connecting two sensors
#include <SoftwareSerial.h>
#include <BlynkSimpleStream.h>

// Define the pins used for the sensors
const int dustSensorPin = A0;
const int trigPin = 2;
const int echoPin = 3;

// Define variables to store the sensor data
int dustConcentration;
float distance;

// Define the Blynk authentication token
char auth[] = "YourAuthToken";

// Define the software serial pins for the ESP8266 module
SoftwareSerial espSerial(10, 11); // RX, TX

void setup()
{

// Start serial communication with the Arduino IDE serial monitor
Serial.begin(9600);

// Start serial communication with the ESP8266 module
espSerial.begin(9600);

// Connect to the Blynk server
Blynk.begin(espSerial, auth);

// Configure the sensor pins
pinMode(dustSensorPin, INPUT);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

}

void loop()
{

// Read the dust concentration data
dustConcentration = analogRead(dustSensorPin);

// Read the ultrasonic sensor data
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
distance = pulseIn(echoPin, HIGH) * 0.034 / 2;

// Print the sensor data to the Arduino IDE serial monitor
Serial.print("Dust concentration: ");
Serial.println(dustConcentration);
Serial.print("Distance: ");

Page 12 of 14



Serial.println(distance);

// Send the sensor data to the Blynk app
Blynk.virtualWrite(V0, dustConcentration);
Blynk.virtualWrite(V1, distance);

// Call the Blynk.run() function to process Blynk app commands
Blynk.run();

// Wait for a short period of time before repeating the loop
delay(100);

}

Target Specifications Changes
Instead of measuring from 10 ppm to 20 ppm. We decided to have the minum air quality be
around 800 ppm and maximum be around 1500 ppm

Feedback and Comment
The feedback from clients was questioning whether the ppm levels we told them were accurate,
turns out their suspicions were correct. We changed the average levels for the dust sensor to be
around 800-1500 ppm

Target Specifications
Level Sensor Dust Sensor

Weight 13g 21g

Dimension 45*20*15mm 71*70*23mm

Testing Range 20-4000 mm 0.0-999.9 ug/m3

Air Quality N/A 800-1500 ppm

Energy
Consumption

120wH 120wH

Safety Incidents 0 incidents reported during testing 0 incidents reported during testing

Maintenance Nearly zero maintenance Nearly zero maintenance

Durability Long-term stable work Long-term stable work

Cost-effectiveness 0.006 CAD/H 0.006 CAD/H

Page 13 of 14



Bill of Materials

Page 14 of 14


