PD E - PROJECT PROGRESS PRESENTATION INCLUSIVE BIKE

By: Group A2.4

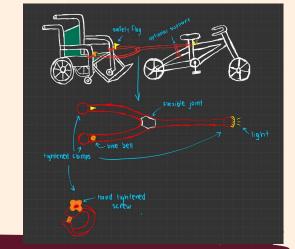
KEY COMPONENTS OF OUR PROJECT DELIVERABLE TO DATE

Metric	Need	Metric	Importanc e	Units	Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7
1	8	Cost	3	\$ (CAD)	380	5345	115	7210	8250	5525	5875
2	11	Attachment Weight	3	kg	6.6	39.4	3.2	64	N/A	45	58
3	9	Maximum User Weight	3	kg	45	125	32	200	120	N/A	120
4	10	Footprint Size	2	cm ³	270 354	N/A	6261	1 447 160	2 341 350	1 966 500	731 880
5	1, 2	Maximum Safe Speed	5	km/h	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	4	Assembly Time	3	mins	5	3	7	2	2	5	4
7	7	Aesthetics	2	Subj	7	5	7	9	9	5	7
8	1	Material Tensile Strength	4	MPa	400	655	655	400	655	400	400
9	2	Visibility (distance)	5	m	N/A	N/A	N/A	N/A	N/A	N/A	N/A

• CUSTOMER NEEDS

BENCHMARKING

#	Needs	Importance
1	The device allows the rider to be moved in a safe manner	5
2	The device and users are visible at night time	5
3	The device is able to help move the wheelchair in slightly bumpy or hilly terrain	3
4	The device is assembled quickly and simply	3
5	The device has the wheelchair user sitting at the front	4
6	The device does not require permanent modifications	5
7	The device is aesthetically pleasing	2
8	The cost of the device does not surpass the maximum budget allocated for this project	3
9	The device is able to support the user's weight	3
10	The device is compact in size	2
11	The device is lightweight	2
12	The bike and device assembly can be an alternate means of transportation to the wheelchair	1

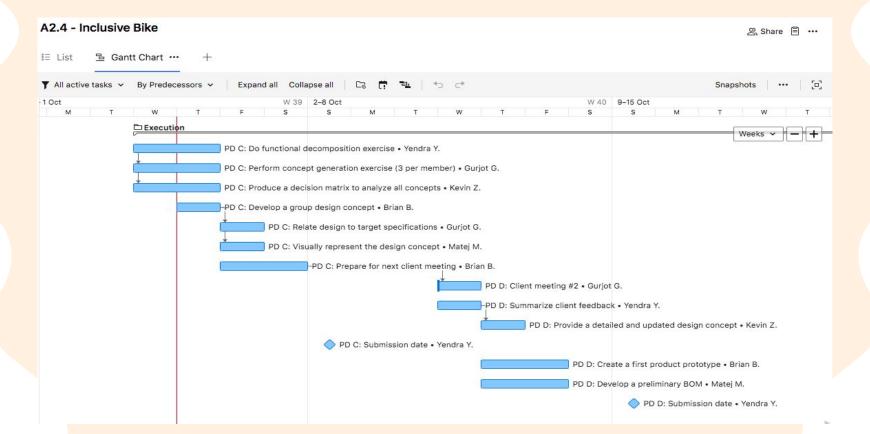


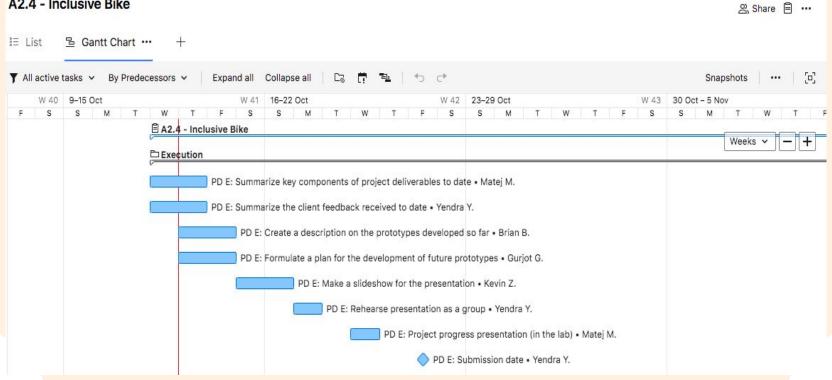
TARGET SPECIFICATIONS

- CONCEPTS
- DECISION MATRIX

Metric #	Metric	Units	Marginal Value	Ideal Value	Reasons	
1	Cost	\$ (CAD)	200	150	This is based on the budget limit in the project description that was provided to us, as well as benchmarking current products on the market.	
2	Attachment Weight	kg	6	4	This is based on benchmarking the current products on the market.	
3	Maximum User Weight	kg	50	90	This is based on the average weight of an adult.	
4	Footprint Size	m³	1	0.5	This is based on the client's request to have a compact device.	
5	Maximum Safe Speed	km/h	10	15	20 km/h is around an average to slow cycling speed. We picked thes values by taking into account two people being cycled around by one person.	
6	Assembly Time	mins	15	5	We took into account the client's experience with tools and general assembly.	
7	Aesthetics	Subjective	6 out of 10	9 out of 10	This is subjective, as it is based on the opinions of the client and the design team.	
8	Material Tensile Strength	MPa	300	400	This is based on the Ultimate Tensile Strength (UTS) of steel, which is a material that we could potentially use for the design of the device.	
9	Visibility (distance)	m	15	20	This is based on the braking distance of a vehicle in a typical residential area.	

				Metrics				Score
Concept	Cost	Attachment Weight	Maximum User Weight	Footprint Size	Maximum Safe Speed	Assembly Time	Aesthetics	Out of 35
B.B #1	4	4	3	3	3	4	2	23
B.B #2	3	4	4	4	3	3	4	25
B.B #3	4	4	3	3	2	4	2	22
G.G #1	2	2	5	2	3	5	5	24
G.G #2	3	4	3	4	3	3	3	23
G.G #3	3	3	4	4	3	3	3	23
K.Z #1	4	4	3	4	2	4	4	25
K.Z #2	2	2	5	2	3	3	4	21
K.Z #3	4	4	3	3	2	4	3	23
M.M #1	3	2	4	2	3	4	3	21
M.M #2	3	4	4	4	3	4	3	25
M.M #3	4	4	2	4	2	4	3	23
Y.Y #1	3	3	4	3	4	3	3	23
Y.Y #2	3	3	2	3	2	4	2	19
Y.Y #3	1	1	5	2	2	2	5	18

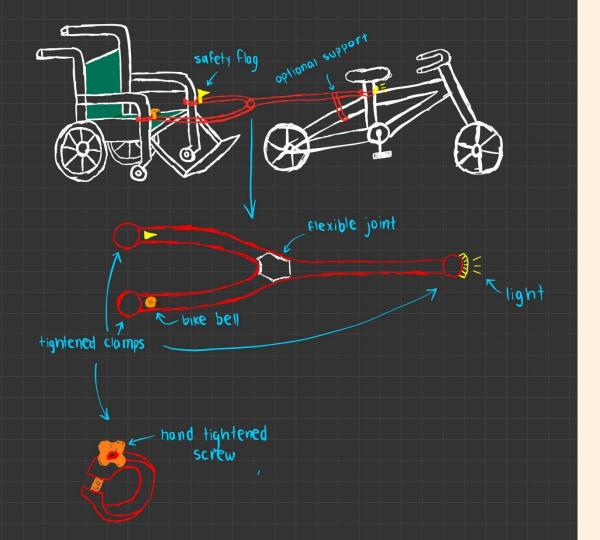



INITIAL PROJECT PLAN

A2.4 - Inclusive Bike

CLIENT FEEDBACK AND CHANGES/IMPROVEMENTS TO OUR DESIGN

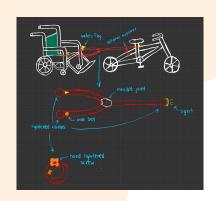
FEEDBACK RECEIVED


- No preferred biking area
- No preferred bike models or types
- They are not sure about the model and dimensions of their wheelchair
- Their wheelchairs have seat belts

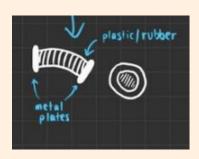
FEEDBACK RECEIVED

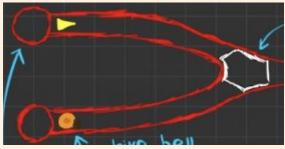
- They appreciated that we offered them a variety of options
- They stressed again that they want the design to be safe and sturdy
- They are fine with sitting behind the bike

- THEY LIKE OUR DESIGN
- THEY WANT MORE ACCESSORIES
- THEY WANT THE DEVICE TO BE FOLDABLE



FUTURE PROTOTYPES


PROTOTYPE DEVELOPMENT PLAN MOVING FORWARD

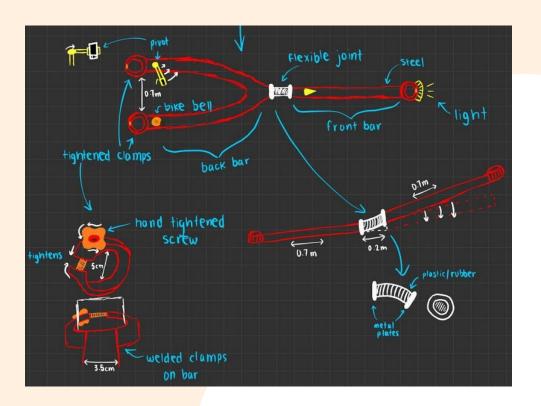

- After talking to our client we will continue to implement their feedback into our future prototype.
- So far we have created a low-fidelity and used this to create our latest prototype which was medium-fidelity.
- Our plan moving forward is to create a medium-fidelity prototype by using our previous prototypes and feedback from our TAs and clients.

COMPONENTS OF FUTURE PROTOTYPES

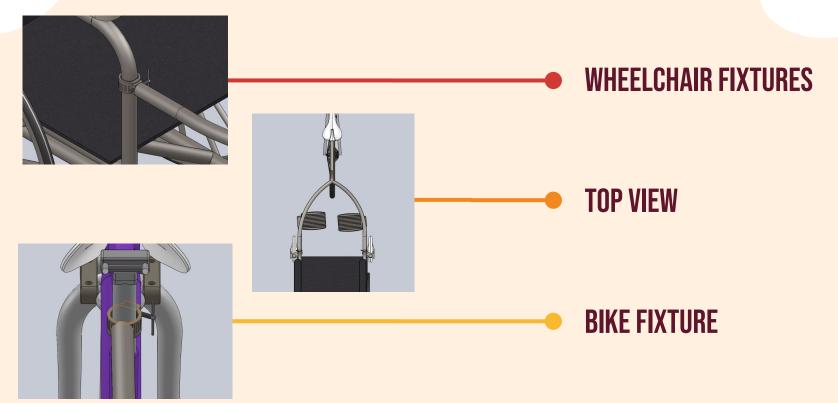
- We will improve our "flexible joint" component.
- We will also implement our final design for the back-end of the main frame.
- We will update our prototype so that it includes specific dimensions; this will allow us to implement our final physical prototype.
- For our physical prototype we will create four components: main frame, flexible joint, clamps, safety accessories.

OUR PROCESS TO ACCOMPLISH THIS

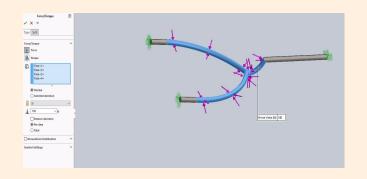
- Our first step is to update our drawing design. This is so we can visualize what we need to update on our current prototype and not go in blind.
- After that we will test our prototype again and consult with our client, team or TAs on any issues we may face.
- We will finally take all of this feedback to create an updated prototype that we can replicate into a physical prototype that our client will be able to use.
- Researching for materials will also have to be done to implement our physical prototype.

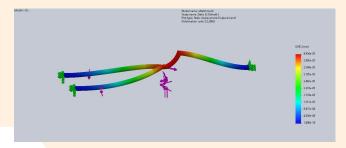


PROTOTYPES



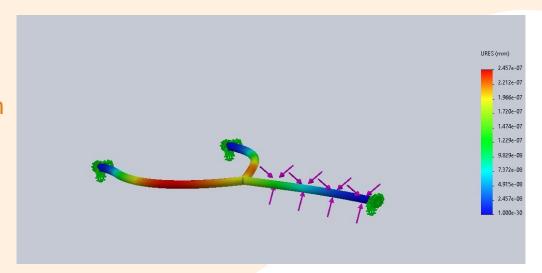
REVISED SKETCH

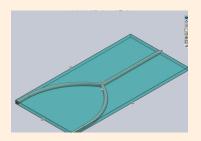

- Detailed sketch based off client feedback
- Hand tightened clamps
- Flexible joint



INITIAL ANALYTICAL PROTOTYPE

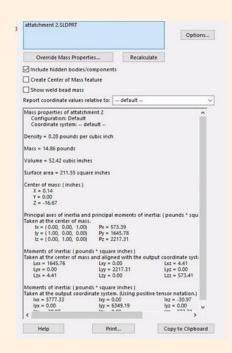
INITIAL ANALYTICAL TESTING





- Testing of device frame at 100N force
- High stress in central joint
- Plastic deformation
- Testing at 50N force produced similar results

INITIAL ANALYTICAL TESTING - STRAIGHT BAR DESIGN


- Removed the center joint
- Same initial test conditions
- No more plastic deformation

ANALYTICAL TESTING REFLECTION

		Og	tions
Override Mass Propertie	s Reca	lculate	
Include hidden bodies/cor	mponents		
Create Center of Mass feat	ture		
Show weld bead mass			
Report coordinate values rela	tive to: default -	2	
Mass properties of clamps Configuration: Default Coordinate system: — defa	ult		î
Density = 0.28 pounds per cu	ibic inch		
Mass = 0.16 pounds			
Volume = 0.57 cubic inches			
Surface area = 11.17 square is	nches		
Center of mass: (inches) X = 0.04 Y = 0.29 Z = 0.43			
Principal axes of inertia and p Taken at the center of mass. x = {0.29, 0.96, 0.04} y = {0.96, 0.29, 0.02} z = {0.00, -0.05, 1.00}	Px = 0.04 Py = 0.06 Pz = 0.08	f inertia: (pounds * s	qu
Moments of inertia: (pounds Taken at the center of mass a	nd aligned with the		rst-
Lxx = 0.05 Lxx = 0.00	Lxy = 0.00 Lyy = 0.04	Lxz = 0.00 Lyz = 0.00	
Lzx = 0.00	Lzy = 0.00	Lzz = 0.08	
Moments of inertia: (pounds Taken at the output coordina bx = 0.10		ositive tensor notation biz = 0.00 biz = 0.02	2)
lyx = 0.01			

- Could be some inaccuracies
- Slightly over the marginal weight value 6kg
- Within the volume target spect
- Could use weldments tool for future use

CLIENT 3 MEETING PLAN

CLIENT MEETING PLAN

ASK FOR UNKNOWNS

Preferred positions for accessories? Wheelchair dimensions?

LET THEM MAKE COMMENTS
ON WHAT THEY LIKE/DISLIKE

THANKS FOR LISTENING

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

