
 Project Deliverable G - Prototype II and Customer Feedback

 GNG 1103 Group C03
 Benoit Tremblay (300236751)
 Rebeca Poulin (300236741)
 Jess Beardshaw (300227707)
 Isabelle Barrette (300228564)

 Sarah Alkadri (300245117)

 University of Ottawa
 March 13th, 2022

 Introduction 4

 1. Client Feedback 5

 2. Prototype II 6
 2.1 Camera End-Effector 6

 2.1.1 3D Printed Products 6
 Figure 1. Second 3D printed prototype for camera end effector with posterior and anterior
 views 6

 2.1.2 3D CAD Model 7
 Figure 2. CAD model of prototype II of the camera end effector 7

 2.2 Corrosion Remover and Painting End Effector 7
 Figure 3. String of commands in Command Prompt to reach desired folder directory 8

 2.3 Coding and Inverse Kinematics 10
 2.3.1 Kinematics concept and search algorithm 10
 2.3.2 Inverse Kinematics code implementation 10

 Figure 7. Screenshots of sections of IK code 11
 Figure 9. Screenshots of code compilation message 13
 Figure 10. Screenshots of Servo motor connections 13

 2.3.4 Code Files (OneDrive Links) 13
 2.4 User Interface code 14

 Figure 11.Screenshot of the user interface code 14
 2.4.1 Definitions of variables 15
 2.4.2 Main Body code 15

 Figure 12. Compiled user interface code and image of user interface 15
 Figure 13. Functioning entry box to input the distance the robot is from its workspace 16
 Figure 14.Camera end effector control page 16
 Figure 15. Programming Interface once “Take Picture” button is pressed 17
 Figure 16. Water and Paint end effector control page 17

 2.5 Safety 17
 2.5.1 Emergency Stop 17

 Figure 17. Emergency stop function within the user interface 18
 2.5.2 Motion Detection Sensors 18

 Figure 18. Motion detection sensors functioning 18

 3. Prototype Test plans 19
 3.1 Prototype II Test Plan 19

 Table 1. Prototype II Test Plan with results 19
 3.2 Prototype III Test Plan 20

 Table 2. Prototype III Test Plan with expected results 20

 4. Updated Bill of Materials 22

 Table 3. Bill of materials with total product cost estimate 22

 5. Target Specifications 23
 Table 4. Target Specification of all aspects 23

 Conclusion 24

 Bibliography 25

 Wrike Link:
 https://www.wrike.com/workspace.htm?acc=4975842&wr=20#path=folder&id=824968763&c=list&
 vid=64521612&a=4975842&t=830081719&so=5&bso=10&sd=0&st=nt-1

https://www.wrike.com/workspace.htm?acc=4975842&wr=20#path=folder&id=824968763&c=list&vid=64521612&a=4975842&t=830081719&so=5&bso=10&sd=0&st=nt-1
https://www.wrike.com/workspace.htm?acc=4975842&wr=20#path=folder&id=824968763&c=list&vid=64521612&a=4975842&t=830081719&so=5&bso=10&sd=0&st=nt-1

 Introduction
 As our design day approaches, we begin to invest more time and effort into making prototypes

 with feasible concepts. We are beginning to conceptualize ways that our prototypes will come as one to
 form our final functional product that will be presented on a design day. During this week's deliverable,
 we have gone more and more in-depth about the specific functions of our different prototype concepts.
 We have ameliorated our previous prototypes after encountering the actual robot and seeing its
 dimensions and motor locations.
 Our first prototype is the camera end-effector which we have 3D-printed from a newly augmented CAD
 model. Our coding and inverse kinematics prototype has been refined to work with available servo motors
 on the robot arm. Our corrosion remover AI has started the development stage and will be able to provide
 a particular and new element to our final product. Notably, our user interface code has dramatically
 evolved and started to connect to different robot functions. Finally, we have spent much time ameliorating
 the arm's safety measures with our buzzer and camera feed.

 1. Client Feedback
 At the previous client meeting, the client did not give our group feedback regarding the

 development of the end effectors, user interface or inverse kinematics software. However, the client
 expressed his interest in our corrosion detection software, and he encouraged our solution's continued
 development.

 At the next client meeting, our group is planning to further our prototypes by testing our inverse
 kinematics code and end effectors on the robot arm and the user interface and the corrosion detection
 software.

 2. Prototype II
 As we continue testing, we will have to update and change each subsystem significantly as we get

 new feedback, better ideas, and encounter technical problems. As our knowledge expands, we are
 constantly changing our game plan, referring to the target specifications and solving the client's needs
 most efficiently.

 2.1 Camera End-Effector
 After printing the first end effector, we changed the overall design completely and finalized which

 camera we were deciding to use. A central feature is quickly removing the back piece to access the
 camera inside. We realized this feature is unnecessary as the client does not need to access the camera.

 We decided to remove the clips feature and instead create a simple box shape where the camera
 slides inside. The back piece will still be bolted to the finger using spacers and nuts but will also be bolted
 directly to the anterior piece of the end effector. This eliminates our concern of the clips malfunctioning,
 not fastening correctly, or falling off when the arm is moving. Following that, the semi-circle shape is
 replaced with a box shape, following the camera's shape. The camera lens protrudes out the front and is
 secured interiorly using four bolts securing each corner of the camera. The bolts extend through the
 posterior side and are fastened with nuts.

 2.1.1 3D Printed Products

 Figure 1. Second 3D printed prototype for camera end effector with posterior and anterior views

 2.1.2 3D CAD Model

 Figure 2. CAD model of prototype II of the camera end effector

 2.2 Corrosion Remover and Painting End Effector
 The primary issue with trying to understand and run a program written in python with our group

 is that none of us are super familiar with the program or coding in general. Another issue with the current
 corrosion AI is that it is a decently old program, five years old, so most of the libraries have updated and
 changed since, and some of the functions are either invalid or changed.

 Firstly, when looking at the ReadMe file given by the code creator, it said to run a python
 command from the src directory (the file containing all the python files) to run them all at once. As a very
 inexperienced programmer, this was a big challenge. After doing research, we learned that python needed
 to be set up with a command prompt to run codes from the directory. To find the specific directory
 needed, we need to use "cd NameOfFolder" several times to set up the directory to the src folder.

 Figure 3. String of commands in Command Prompt to reach desired folder directory

 The following error encountered was due to old code. The error that occurred had to do with the
 scikit-image library. Essentially the function skimage.util.pad gave an error message saying it does not
 have the pad attribute. After looking at all the changelogs in the past three years, we discovered that the
 thread skimage.util.pad was removed from scikit-image, the patch notes stated that numpy.pad can be
 used for the same effect. After pip downloading the NumPy library, the error message was fixed.

 Figure
 Figure 4. Error message received because of scikit-image problems

 The third encountered issue is found within the imageTools.py file, and it says Assertion Failed.
 We have researched and asked colleagues and friends about the issue, and it is most likely because of the
 +directory+ portion of the code above the red-underlined code line. To fix this issue, we will most likely
 need to change the directory to suit the files directory in the laptop.

 Figure 5. Error message from imageTools.py about cv2 (OpenCV)

 To fix this I had to change the directory to the first image in the file it is trying to read, so:
 C:\Python\Corrosion detection2\corrosion-detection-master\data\test\(name of first image)(ex:picture.jpg)

 This fixed the issue, and the program finally imported and classified the images, which brought
 us to the following error. Once this error was fixed, everything started to come together. The images in the
 files were being shown as scanned and imported into the command prompt.

 Figure 6. Images from the test folder being processed within the program.

 The final error in the code was a logic error. In the Image.py file, there is an issue on line 99 and
 126. The error message is: if self.hsHist != None and hist!= None:ValueError: The truth value of an array
 with more than one element is ambiguous. Use a.any() or a.all(). This was the most confusing error of all
 because, without programming knowledge, we could not understand the logic of the sentence. Luckily,
 our friend came to the rescue and told us to add .any() after each hist in lines 99 and 126. The code finally
 ran and displayed the final message following the change: Done! The code is now fully functional and
 reads images located in the test file, and writes the names of the files containing corrosion inside the
 ResultsTest text document. A video showing the program fully functional is shown below.

 The program does not seem very accurate and will say that pictures without rust contain rust.
 There is also the option to set Hue Saturation and Edge threshold values, but currently, it does not work
 correctly and shows an error message. This is our next task for the corrosion detection program.

 https://youtu.be/xPfUXLRoVfo
 The before last error was once again an issue with scikit-images changelogs. When using the

 .remove_small_holes function in the program, the operation min_size was no longer a function that
 existed. After searching through various coding threads, we discovered that using area_threshold instead
 fixed the critical issues and brought us to the final result.

https://youtu.be/xPfUXLRoVfo

 Upon further review, there is also a way to run the code inputting your Hue Saturation and Edge
 Threshold values. This section of the code still yields errors when the values are inputted. Pankaj helped
 us with this, and now the code runs entirely without errors.

 The last part needed is calibration because it is inaccurate and says that pictures without corrosion
 contain corrosion. We need to look into this section of the code.

 def writeResults(clf):
 res = open("../results/results_"+testDir+".txt","w+")
 for im in clf.test:

 if im.label == 1:
 res.write(im.name+"\n")

 res.close()
 The error is believed to lie within clf and the ==1 part, we need to figure out what they are and what they
 do.

 2.3 Coding and Inverse Kinematics
 We have refined the inverse kinematics code for our second prototype to fit the new test robot

 with servo motors and drivers. We will also use forward kinematics to find coordinates of corrosion spots
 (with corrosion detection software and camera program) and then acquire those coordinates to use for
 inverse kinematics.

 2.3.1 Kinematics concept and search algorithm
 Our forward kinematics derived concept will be to search a specific area using known angles to

 scan for corrosion using the software from section 2.2. The main concept for this part of the robot's
 functioning is to have a search pattern where at each "increment," the corrosion detection code described
 in section 2.2 will run through the user interface as described in section 2.4. The user interface will
 essentially store values into the code that can later be used in the inverse kinematics code from section
 2.3.2. As for basic kinematics, movement will demonstrate servo motor rotations allowing the arm to
 move to specific coordinates.

 2.3.2 Inverse Kinematics code implementation
 T o refine our code, we will need to ensure that the robot can get to an (x,y,z) coordinate with

 accuracy and precision. As opposed to our second prototype, we used a different analytical approach. This
 will essentially rely on finding triangles to form relationships between the joint variables and the x,y
 position. The triangle is drawn in purple (in the figure below), which tells us the end-effector's position in
 the base frame. We will be using three triangular relationships to solve IK from this new approach.

 First off, we use the Pythagorean theorem for our right triangles. Secondly, we will use
 SOHCAHTOA to use the sine, cosine and tangent relationships. Thirdly, we can use the law of cosines
 when we do not have a right triangle.

 We have simplified the code to fit a palletizing robot arm meaning that the angle that the Elbow
 servo motor performs stays constant and partly independent of the Shoulder servo motor rotation. The
 variables that required essential setup functions and analytical explanations are here below.

 Figure 7. Screenshots of sections of IK code

 Figure 8. Image of IK mathematical concept

 Figure 9. Screenshots of code compilation message

 Figure 10. Screenshots of Servo motor connections

 2.3.4 Code Files (OneDrive Links)
 IK :

 a. IK_CODE_palletizing.ino
 b. IK_CODE_original.ino
 c. IK_CODE_beta.ino

https://uottawa-my.sharepoint.com/personal/jbear012_uottawa_ca/Documents/GNG1103%20Project/Kinematics%20Software/IK_CODE_palletizing/IK_CODE_palletizing.ino?csf=1&web=1&e=2nfTbs
https://uottawa-my.sharepoint.com/personal/jbear012_uottawa_ca/Documents/GNG1103%20Project/Kinematics%20Software/IK_CODE_original/IK_CODE_original.ino?csf=1&web=1&e=vltl5y
https://uottawa-my.sharepoint.com/personal/jbear012_uottawa_ca/Documents/GNG1103%20Project/Kinematics%20Software/IK_CODE_beta/IK_CODE_beta.ino?csf=1&web=1&e=tZuXbg

 2.4 User Interface code
 This week's prototype was very different from last week, and we developed a much more

 complex and a more aesthetically pleasing experience for our GUI. Starting with a completely new base
 for our code discovered by following a tutorial online linked in the bibliography below, we have acquired
 knowledge of many new functions and deepened our minimal existing knowledge of the Python
 programming language. Using all of this, we have come up with the following code, which will be
 explained below.

 Figure 11.Screenshot of the user interface code

 2.4.1 Definitions of variables
 The code begins by importing the necessary libraries to execute the code downloaded and

 installed beforehand. Once everything is set up, the code begins reading the defined variable, which in
 this case is "emergency_stop," which currently has the pressing of the stop button print "Stopped on the
 run code screen, "startcamcode" which prints "Code Running" when its associated button is pressed. We
 also have "distance_wall" which is the button pressed to print the entered distance from the wall in meters
 onto the code screen, as well as "takepicture" which prints "Say Cheese!" onto the same screen. These
 four functions will eventually be linked to all other codes, such as the inverse kinematics one for the
 distance function, the camera code and other Arduino codes for the things such as the interrupt function
 for the stop button and the video feed to be shown on the camera end-effector, but since we are still quite
 early on in the prototyping process, they have yet to be connected. Our final definitions are the end
 effector button controls, "open_cameraeffector" which clears the home screen. The addition of all the new
 functions necessary for the camera end effector such as the start, stop and take picture button that is
 mentioned previously and the "open_wpeffector" which has those same start and stop buttons. These
 definitions with built-in functions are the embellishments of this whole user interface experience and their
 functions, but the main code will be explained next.

 2.4.2 Main Body code
 The main code contains a mixture of labels, frames, buttons and an entry box, which, combined

 with all their conditions, create the user interface that you see when the code is running. The buttons are
 each assigned a command defined and explained in the previous paragraph. The labels and frames are
 coloured and filled with images to make the user an enjoyable and easy experience. When run, the code
 will pop up the following window, which contains the buttons and entry box of the home page.

 Figure 12. Compiled user interface code and image of user interface

 Once the measurement is input in the entry box and the button beside it is pressed you will see the
 following.

 Figure 13. Functioning entry box to input the distance the robot is from its workspace

 This means you can now pick your first end effector, if going in order you would start with the
 camera one which will look like so.

 Figure 14.Camera end effector control page

 The blue area will eventually be filled with the live feed from the camera end effector, but at the
 moment, we do not have those connected. As mentioned above, the start, stop and take picture buttons
 print text in the programming interface.

 Figure 15. Programming Interface once “Take Picture” button is pressed

 The final face of the user interface is the water/paint end-effector one which is used by pressing
 the water end effector button on the home screen. There will be some back button or a new button in the
 final product or the next prototype to select the second end effector from the first one since there is no
 easy way to do so. This is the water end effector interface which will most likely be modified in the
 future.

 Figure 16. Water and Paint end effector control page

 Similar to the camera end-effector, the water/paint end-effector has the start and stop buttons and
 will most likely have something in the currently empty box, but there is not as of this prototype.

 In conclusion, the user interface for our project is still very much a work in progress but is
 moving along nicely and will soon be bringing everything together into a simple and easy-to-use GUI.

 2.5 Safety

 2.5.1 Emergency Stop
 Our team will be implementing an emergency stop function within the user interface that will stop

 all robot operations in light of a malfunction of the robot. This function will be implemented within the
 user interface to ease use for those operating the robot. Considering that those operating the robot will

 have limited technical knowledge, the design of the function will be in the corner of each page with large
 lettering to be visible to the user at all times.

 Figure 17. Emergency stop function within the user interface

 2.5.2 Motion Detection Sensors
 The motion detection sensors have been implemented and tested to detect human motion presence

 within 7 meters of the sensors. This will alert the passerby that the robot functions with a buzzer sound.
 The red led light on the breadboard also indicates when the sensors have detected motion. Once the
 sensors are triggered, an interrupt function on the arduino will pause the movement of the arm for a timed
 duration. Then, assuming the sensors are not re-triggered, the arm will resume the performing function.

 Figure 18. Motion detection sensors functioning

 3. Prototype Test plans

 3.1 Prototype II Test Plan
 Table 1. Prototype II Test Plan with results

 Test # Objective Description and Test Method Test Duration
 and Date

 Results

 1 Test arm
 movement code

 on arm

 The algorithm and code for the
 inverse kinematics movement of
 the arm should be completed, and

 it will be tested on the arm as
 soon as the opportunity presents

 itself so that any issues are
 discovered and it can be modified

 accordingly quickly

 1 day
 First session

 with robot arm

 Will be tested once the
 robot arm is completed

 March 14th, 2022

 2 Paper or
 cardboard quick

 prototype

 Quickly make a 2D and/or 3D
 tangible model of end-effectors

 as a size comparison to the actual
 robot and objects that will be

 used with them to be sure of our
 dimensions

 > 1 day
 First session

 with robot arm

 Will be tested once the
 robot arm is completed

 March 14th, 2022

 3 Retouch
 engineering

 drawing and 3D
 modeling of
 end-effectors

 Any miscalculations or wrong
 dimensions are discovered

 through the previous tests and
 now the drawings and models

 can be readjusted to
 accommodate our new

 discoveries

 1 day
 After first

 session with
 robot

 Will be completed one day
 after the first session with

 the robot, March 15th,
 2022.

 5 3D printed
 model of what

 we have
 designed so far

 The 3D model is adjusted and
 can now have the pieces printed
 and assembled for testing on the
 robot. If the previous analysis

 and prototyping were effective,
 this should be done once or twice

 to minimize the number of
 materials used and the overall

 cost

 1 or 2 days
 Second session
 with robot arm

 Will be completed during
 second session with the
 robot arm, March 17th,

 2022

 3.2 Prototype III Test Plan
 Table 2. Prototype III Test Plan with expected results

 Test
 #

 Objective Description and Test Method Test Duration
 and Date

 Expected Results

 1 Test code and
 user interface

 with newly 3D
 printed pieces

 and arm

 Pieces are printed and the
 end-effectors are assembled,
 everything can be wired and

 plugged into the Arduino in its
 respective place, and the code

 can be tested on the arm and the
 user interface. If any errors

 occur, the code and user
 interface will have to be

 modified accordingly

 Consistent with
 prototype testing.
 Five consecutive
 test trials with no

 errors.

 1 or 2 days
 Once robot and 3D printer

 is accessible

 2 Make sure
 attachments and

 necessary
 scenarios are

 compatible with
 end-effectors

 and code

 The final test will entail putting
 all pieces together for one last

 test, running multiple scenarios
 with the user interface, arm and
 all the end effectors to simulate
 the users' experience and ensure

 that it is possible, simple and
 easy to understand for the high
 school students who will most
 likely be running the interface

 and interchanging the end
 effectors

 Consistent
 prototype testing.
 Five consecutive
 test trials with no

 errors.

 3 days
 Second last step, leave

 time to fix mistakes and
 get feedback

 3 Adjust all
 necessary things

 and create the
 final versions of
 end-effectors,co

 de and user
 interface

 Once the group and client have
 settled on a final version and has
 been through the tests previously
 mentioned, it is time to bring it

 to life and create the final
 version of everything necessary,
 test it on the robot arm and if all
 goes well, there will no longer be

 any need for prototyping

 Either run out of
 time or be

 satisfied with the
 final product

 before design day

 1 to 3 days
 Last step, must be before

 design day

 4 Test Corrosion
 detection

 program and fix
 bugs to properly
 detect corrosion

 Currently the code struggles with
 assigning values according to

 whether there is corrosion or not
 in the picture. With the TA and
 other people we will try and fix

 the current issue

 Either run out of
 time or until the

 error is fixed
 within the code

 1-2 weeks
 Lots of files to go back

 and forth as well as
 midterms this week will

 cause delays

 5 Camera pictures
 running through

 Corrosion
 Program

 Now that the camera is complete
 we can save the pictures it takes

 into the input file for the
 corrosion code so it scans those

 pictures taken

 Code needs to
 work properly to
 detect properly

 but we can test the
 input method now

 that the camera
 works and the

 code runs

 1 day
 Only need to set up

 camera onto laptop with
 Corrosion detection

 program

 4. Updated Bill of Materials
 Table 3. Bill of materials with total product cost estimate

 Item Name and Link Quantity Cost ($) Justification

 Camera
 OV7670 VGA CMOS
 Camera

 1 23.68 The camera chosen needs to be compatible with
 Arduino software in order to access the data (live
 video feed) and send it to other devices.

 PIR motion sensors
 PIR motion sensors

 1 14.99 These sensors will be added to different
 end-effectors to ensure safety while operation.
 (soldered)

 3D printing materials 0.00 Since most of our end effector components will be
 3D printed, we will be using the machines and
 materials provided in the Maker Lab.

 Arduino kit and wires 1 0.00 (Free
 at Maker

 Lab)

 The Arduino will be useful for the spray guns in
 order to connect the sensors and triggers to a
 specific output in our software. This kit includes a
 breadboard and some resistors in order

 Soldering kit 1 0.00 (Free
 at Maker

 Lab)

 Used
 to mend our wires together and solder them to our
 things like our camera and sensors to ensure that
 they will not be easy to break off or to fall apart
 simply by moving.

 Total product cost (w/o taxes or
 shipping)

 38.67

 Total product cost (including taxes
 and shipping)

 41.16

https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1
https://www.amazon.ca/gp/product/B09JYZX32L/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/HiLetgo-HC-SR501-Infrared-Sensor-Arduino/dp/B07KZW86YR/ref=sr_1_3?keywords=pir+sensor&qid=1646249497&sr=8-3

 5. Target Specifications
 Table 4. Target Specification of all aspects

 Robot Mechanics

 Degrees of Freedom 3

 Weight supported by end effector (kg) 1.00

 Weight of robot (kg) 9.07

 Camera end-effector

 Back and Main piece diameter (mm) 60.00

 Back depth (mm) 2.90

 Main piece depth (mm) 22.00

 Clips length 10.00

 Weight (kg) 0.024

 Camera

 Weight (kg) 0.016

 Camera Resolution VGA 640 x 480 at 30 fps

 Working Power 60mW/15fps

 Pixel coverage 3.6um x 3.6um

 Painter/corrosion remover end-effector

 Main piece dimensions (mm) (49.00 x 37.40 x 35) + 2(9.0 x 4.0 x 4.0)

 Adjustable piece dimensions (mm) (44.198 m x 22.0 x 34.5) + 2(32.5 x 4.8 x 4.8)

 Weight (kg) 0.046

 Conclusion
 In summary, we are working out all the kinks in our prototypes, but everything is moving

 forward, and things are getting better every day. We have had our fair share of difficulties with this
 prototype from our many failed attempts at end-effectors and multiple coding troubles. However, our plan
 is slowly but surely coming together, and we will be working just as hard on our following prototypes and
 the final product to produce the best product possible for our client.

 Bibliography
 Galli, K., 2019. How to Program a GUI Application (with Python Tkinter)! . [video] Available at:
 < https://www.youtube.com/watch?v=D8-snVfekto > [Accessed 13 March 2022].

https://www.youtube.com/watch?v=D8-snVfekto

