
Project Deliverable C - Design Criteria

GNG 1103 Group 3
Benoit Tremblay (300236751)
Rebeca Poulin (300236741)
Jess Beardshaw (300227707)
Isabelle Barrette (300228564)

Sarah Alkadri (300245117)

University of Ottawa
February 6th 2022



1

TABLE OF CONTENTS
Introduction………………………………………………………………………………………2

Translating Needs into Design Criteria…………………………………………………………2

List of Prioritized Criteria……………………………………………………………………… 3

Target Specifications……………………………………………………………………………..5

Changes Since Deliverable B…………………………………………………………………….6

Technical Benchmarking………………………………………………………………………...6

Conclusion……………………………………………………………………………………….. 7

Wrike link:
https://www.wrike.com/workspace.htm?acc=4975842#path=folder&id=824968763&c=list&vid=
64521612&a=4975842&so=11&bso=10&sd=0&f=&st=nt-1&sfi=1

https://www.wrike.com/workspace.htm?acc=4975842#path=folder&id=824968763&c=list&vid=64521612&a=4975842&so=11&bso=10&sd=0&f=&st=nt-1&sfi=1
https://www.wrike.com/workspace.htm?acc=4975842#path=folder&id=824968763&c=list&vid=64521612&a=4975842&so=11&bso=10&sd=0&f=&st=nt-1&sfi=1


2

Introduction
John Faurbo and the Royal Canadian Navy need a robotic arm that has the ability to detect, remove and
paint over corroded areas to ensure proper maintenance on the Halifax class warships. Cost, ease of use,
proportions and safety of product are key to creating the best product for the client’s needs.

To fulfill the client’s needs, this deliverable contains a list of prioritized needs, target specifications, and
similar existing products for benchmarking.

This deliverable contains a list of the user's interpreted needs, including function and non-functional
requirements, as well as metric constraints. The target specifications include the ideal and marginal values
provided by John Faurbo. In addition to the design criteria, benchmarking and research of other solutions
that satisfy our interpreted needs are included in this deliverable. The information in this document will be
used to create the conceptual design in the future.

Translating Needs into Design Criteria

Rank Needs Design Criteria

1 Safety system Shut off sensors for passing people/stability of
arm

2 Ability to move and complete the 3 tasks with
inverse kinematics

1. Draw a shape or logo
2. Sand blast or water blast a grid area 3. Inspect

a low oxygen space in 360deg
Uses inverse kinematics in code to indicate to

robot where to go
The arm uses 3 degrees of freedom

3 Holds and withstands the end effectors (weight and
pressure)

Weight of end effectors(grams)/ Water pressure
(psi)/Paint pressure(psi)

4 Easy switchable end effectors for different tasks End-effector shape/fragility/End-effector
weight(grams)

5 Lightweight and compact Weight of end-effectors/arm (grams/lbs)

6 Simple/familiar code, files and hardware Arduino Uno/Readable code/Common
programming language(C, C++, Python)

7 Easy to learn to operate Time to learn to operate the robot(min)/Operable
by someone with little technical experience

8 Infrequent repairs/replacement pieces Lifespan before minor repairs(months)/Lifespan
before major repairs(months)

9 Efficiency/speed The area of sight/vision/range to spray and
observe with a camera per hour.(m2/hour)

10 Water resistant/able to work in near water
environment

Operating conditions: water



3

11 Light up a dark area to take picture scan Light system connected to camera/ brightness of
lights(cd)

List of Prioritized Criteria

Functional Requirements Relation Value Units Verification
Method

1 The end effectors can hold and
operate camera, paint and
anti-corrosion sprayer.

= Yes N/A Test

2 The arms supported weight.(i.e.the
end effectors weight)

>= 750 g Final test,
weighing, analysis

3 The end effectors are easily
interchangeable.

= Yes N/A Test

9 The arm and end effectors remain
stable and withstand pressure from
hose and paint.

>= 180 psi Test

4 The robot is easy to learn to
operate.

< 45 minutes Test

5 The end effector and parts are 3D
printable

= Yes N/A Analysis

6 The arm is powered by 120-volt
outlets

= Yes N/A Test, final check

8 The arm and end effector can be
assembled quickly.

< 25 minutes Test

10 The code uses a common
programming language such as C
or C++ or Python.

= Yes N/A Test

11 The code uses inverse kinematics. = Yes N/A Test

12 The design of end effectors and
code are open source.

= Yes N/A Test

13 The arm is controlled using an
Arduino Uno.

= Yes N/A Test



4

Constraints Relation Value Units Verification
Method

1 The weight of the end effectors. <= 750 g Analysis

2 The dimensions of the end
effectors.

< 60 mm Analysis

3 The cost of the project. < 50 $ Estimate, final
check

4 The weight of the arm. = 20 lbs Analysis

5 The dimensions of the arm. < 1 m2 Analysis

6 The lighting of the arms
surroundings.

> Yes N/A Analysis

7 The area of sight/vision/range to
spray and observe with camera.

= 1 m2 Analysis

Non-Functional Requirements Relation Value Units Verification
Method

1 The robot is safe to operate and be
around while working.

= Yes N/A Test

2 The robot is operated by someone
with limited technical experience.
(High School Education)

= Yes N/A Ask non-expert

3 The parts, robot and code are
easily repairable.

= Yes N/A Can be 3D printed

4 The robot is compact and
transportable.

= Yes N/A Analysis of
dimensions

5 The robot’s lifespan before minor
repairs needed.

>= 2-3 months Estimate, analysis

6 The robot’s lifespan before major
repairs needed.

>= 6 months Estimate, analysis

7 The robot is aesthetically pleasing. = Yes N/A Client Meeting



5

Target Specifications

Importance
(1-10)

Criteria Target Description

10 Degrees of
Freedom

3 The degrees of freedom allows for optimal movement of
the end effector to perform the required tasks. The use of
inverse kinematics is required as well.

10 Weight
supported by
end effector

≥ 1
kilogram

The more weight supported by the end effector, it will be
able to perform jobs at a higher complexity, while
decreasing the risk of failure due to exceeding the
maximum supported weight. Ensuring the end effector is
properly stabilized at the connecting joint

7 Weight of
robot

≤ 20 lbs. The greater the weight, the more difficult the crew will
have transporting the robot to different locations. This is
essential as the robot is required to perform jobs in a
variety of locations among the ships. The lower the
weight, the easier manufacturing of the robot pieces via
3D printing on the ship.

7 Weight of
end-effector

≤ 750
grams

The weight of the end-effector should be very inferior to
that of the entire arm to assure that the centre of mass is
within the dimensions of the arm. It will also be easier to
handle if it is lightweight.

8 Pressure
from water

hose

140psi ≤x≤
180psi

The pressure from the water hose cannot be too high or it
risks applying too much force to the end-effector and the
arm. A water pressure of 140 to 180 psi is the ideal
pressure to rinse off the sides of the boat prior to
applying paint. Ensuring the base and the end effector is
stable to withstand a pressure preferably greater than
180psi to eliminate the risk of failure.

9 Volts
Resistance

= 120-volt The robot will be powered via 120 volt electrical outlets
scattered throughout the ship. Utilizing the power source
already present and accessible aboard prevents creating
an alternative power source costing resources and money.

6 Painting
Speed

≥ 1m2/hour The client requests that they need to be able to leave the
robot for periods of time, and return to a section fully
painted. It will be fast enough to strip the surface of
corrosion, let it dry and then apply a layer of paint in a
1m2 radius of the robot within an hour. At this rate, it can
be supervised maybe once every hour and moved every
few.



6

Changes Since Deliverable B
There have been no significant changes to the development of the project since deliverable B. Our group
has discussed the possibility of programming the previous Thor solution using inverse kinematics, as well
as developing our own unique solution.

Technical Benchmarking

Rank Source Technical Requirements Similar design
criterias/needs (Table 1)

1 https://hackaday.io/
project/12989-thor

- Open source
- Designed with FreeCAD
- Arduino Mega
- 3 different end effectors shown (claw,
screw and scoop claw)
- Powered by stepper motors for
arduino in descending sizes to reduce
weight needed to support motors
- GT2 pulley and belt for 360 rotation

-Easy switchable end
effectors for different tasks
-Arduino/Readable
code/Common programming
language(C, C++, Python)
-Holds and withstands the
end effectors (weight and
pressure)
-Lightweight and compact
-3D printable

2 https://blog.floydhu
b.com/localize-and-
detect-corrosion-wit
h-tensorflow-object-
detection-api/

- Describes how to detect corrosion
using program that scans images
- Explains process of how to code task
using python
- Program will say if there is/is not
presence of rust in the image

-Ability to scan a photo and
detect rust/corrosion
-Coded on python, open
source

3 https://hackaday.io/
project/12989-thor/l
og/44018-inverse-ki
nematicsb

- This website demonstrates formulas to
understand and begin to program the
Thor arm with inverse kinematics.
- Physics formulas that explain logic of
inverse kinematics in robotics

-Inverse kinematics

4 Generate Code for
Inverse Kinematics
Computation Using
Robot from Robot
Library - MATLAB
& Simulink
(mathworks.com)

- Algorithm and basic code in different
languages that we can base off of and
compare to some of the others we find.
- It does use a robot arm and inverse
kinematics which are helpful to our
situation.

-Inverse kinematics
-Arduino/Readable
code/Common programming
language(C, C++, Python)
-Lightweight and compact

5 Inverse Kinematics
- Nikita Lukhanin

- Inverse kinematics code for a three
joint robot arm programmed and run
with Arduino
- Made for an open source arm
- Gives a good idea of the format and
algorithm needed

-Arduino Uno/Readable
code/Common programming
language(C, C++, C#,
Python)
-3D printable
-Inverse kinematics

https://hackaday.io/project/12989-thor
https://hackaday.io/project/12989-thor
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://blog.floydhub.com/localize-and-detect-corrosion-with-tensorflow-object-detection-api/
https://hackaday.io/project/12989-thor/log/44018-inverse-kinematicsb
https://hackaday.io/project/12989-thor/log/44018-inverse-kinematicsb
https://hackaday.io/project/12989-thor/log/44018-inverse-kinematicsb
https://hackaday.io/project/12989-thor/log/44018-inverse-kinematicsb
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://www.mathworks.com/help/robotics/ug/generate-code-for-inverse-kinematics-included-robot.html#:~:text=Generate%20Code%20for%20Inverse%20Kinematics%20Algorithm%20You%20can,to%20the%20function%20using%20the%20-args%20input%20argument.
https://nikitalukhanin.github.io/projects/inversekinematics/#:~:text=Inverse%20Kinematic%20controls%20designed%20around%20an%20open-source%203d,a%20task%20is%20an%20awkward%20task%20to%20do.
https://nikitalukhanin.github.io/projects/inversekinematics/#:~:text=Inverse%20Kinematic%20controls%20designed%20around%20an%20open-source%203d,a%20task%20is%20an%20awkward%20task%20to%20do.


7

6 https://www.sunfou
nder.com/products/a
rduino-robot-arm-ki
t#:~:text=The%20R
obot%20Arm%20K
it%20for,them%20
move%20on%20yo
ur%20computer.

-Open source MCU Arduino UNO
-Servo expansion board
- Can be controlled by 4 potentiometer
buttons
- Flexible Arm with a gripper that
opens to 3.54 inches and 260 degrees as
well as a radial wrist motion of 180
degrees
- It has an extensive elbow with range
of motion of 180 degrees

-Arduino Uno/Readable
code/Common programming
language(C, C++, Python)
-Lightweight and compact
-Easy to learn to operate

7 https://www.alanzuc
coni.com/2018/05/0
2/ik-2d-2/

- Inverse kinematics code in C#
- 2 dimensional
- Explains in depth the different
components involved in inverse
kinematics for each joint

-Uses inverse kinematics in
code to indicate to robot
where to go
-Arduino Uno/Readable
code/Common programming
language(C, C++, C#,
Python)

8 https://hackaday.co
m/2014/03/27/3-dof
-open-source-robot-
arm-is-just-the-begi
nning/

- Open source palletizing robot
- Arduino Uno firmware
- 3DOF
- Inverse Kinematics
- Holds a pencil and writes message

-Draw a shape or logo
-Arduino Uno/Readable
code/Common programming
language(C, C++, Python)

9 https://www.kicksta
rter.com/projects/uf
actory/uarm-put-a-
miniature-industrial
-robot-arm-on-your

- 4DOF
- Different end effectors for different
tasks
- Possible idea for light (design criteria)

-Light up a dark area to take
picture scan(with light
attachment)
-Easy switchable end
effectors for different tasks

10 https://github.com/
MarginallyClever/A
rm3

- Arduino Uno firmware for inverse
kinematic robot arm

-Arduino Uno/Readable
code/Common programming
language(C, C++, Python)
-Inverse Kinematics

Conclusion
In order for our team to develop a strong solution to the problem initialized by John Faurbo, a clear set of
interpreted needs and design criteria are essential. Functional and non-functional needs, as well as
constraints and target specifications must be thoughtfully planned in order to create the best solution to
the problem.

To work on deliverable D, the information gathered in this document will be used to develop and create
potential concepts for solutions that follow the constraints and requirements.

https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.sunfounder.com/products/arduino-robot-arm-kit#:~:text=The%20Robot%20Arm%20Kit%20for,them%20move%20on%20your%20computer
https://www.alanzucconi.com/2018/05/02/ik-2d-2/
https://www.alanzucconi.com/2018/05/02/ik-2d-2/
https://www.alanzucconi.com/2018/05/02/ik-2d-2/
https://hackaday.com/2014/03/27/3-dof-open-source-robot-arm-is-just-the-beginning/
https://hackaday.com/2014/03/27/3-dof-open-source-robot-arm-is-just-the-beginning/
https://hackaday.com/2014/03/27/3-dof-open-source-robot-arm-is-just-the-beginning/
https://hackaday.com/2014/03/27/3-dof-open-source-robot-arm-is-just-the-beginning/
https://hackaday.com/2014/03/27/3-dof-open-source-robot-arm-is-just-the-beginning/
https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your
https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your
https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your
https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your
https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your
https://github.com/MarginallyClever/Arm3
https://github.com/MarginallyClever/Arm3
https://github.com/MarginallyClever/Arm3

