ADAPTED Controller

Progress Presentation Group Z11

INTRO

1.

What are the goals of the controller?

~~

Agenda

- 1. Customer needs and problem statement
- 2. Concept ideas
- 3. Detailed design
- 4. BOM and assumptions
- 5. Client feedback
- 6. Project plan
- 7. Testing metrics
- 8. Prototyping and testing
- 9. Results and analysis
- **10**. Trials and tribulations
- 11. Next client meeting
- 12. Live demo

COSTUMER NEEDS AND PROBLEM DEFINITION

2.

What are our costumers needs?

Client needs statements /

No.	Client needs statements			
1	A remote adapted to any kind of video game	5		
2	The remote controller is compatible with the Xbox and PC			
3	The remote controller is inspired by the Axis controller model	3		
4	The remote integrates an interface to configure each button	5		
5	The remote software has a macro that allows action to be made by clicking one button	5		
6	The remote is easy to use	4		
7	Buttons can be spaced in any way	2		
8	The remote is simple/doesn't have lot of buttons	3		
9	The remote can be made in a short amount of time	4		
10	The remote is inexpensive	4		

11	The remote is custom made	3		
12	The remote is robust/The remote is made of high quality products but as low-cost as possible			
13	The remote includes a sticky trigger	5		
14	The remote's sticky trigger has an on and off toggle	5		
15	Remote is comfortable	5		
16	The software's user interface is accessible	5		
17	The remote's design is ergonomic	5		
18	The remote has a reasonable weight	4		
19	The controller is portable	1		
20	Sensitivity of buttons and joysticks can be configured	3		
21	The controller have is adapted to the tremors	2		

Problem Definition

" Design a robust, programmable and accessible remote controller that is compatible with both Xbox and PC for disabled gamers. "

Market Research

Xbox adaptive controller

Xbox's proprietary solution to adaptive controllers

Axis 1 Pro

Out of production and expensive accessible controller.

Target specifications

Portability

of the remote

Modularity Modularity

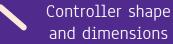
of the button implementation

of the sticky trigger implementation

Manufacturing and Design

Cost

Target specifications cont'd



Shape Accessibility Compatibility Low lag

of the interface and setup

with other devices

Low delay input

6. Concept Ideas

Our 4 different concepts of the controller.

IDEAS

1. Taking apart regular controller

3. Reverse engineer GIP protocol + use Xbox controller to send signals

Edit screen regions

Here you can define regions of the screen to use as mouse pointer controls. Click and drag to draw or move regions, or use the s Control and click to select multiple regions. You may find setting a background image (screenshot) helpful.

4.Use external open-source platform (Alt Controller)

2.Use

with

arduino

Xinput firmware

Detailed Design : Physical Aspect

What are the goals of the controller?

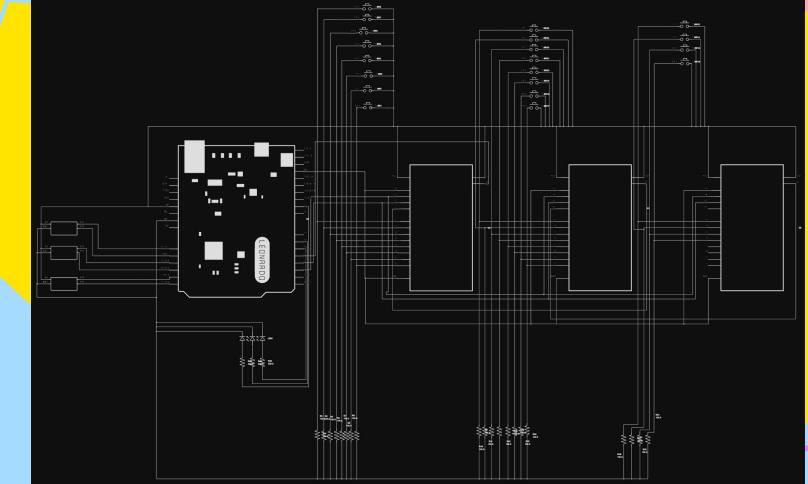
Materials and assembly 🌑

Appearance

MDF

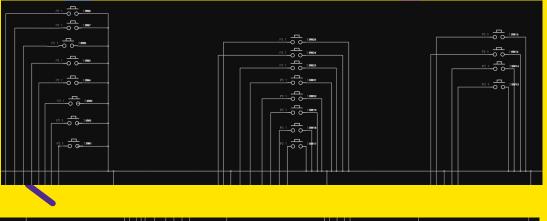
PLA

Wood Joints

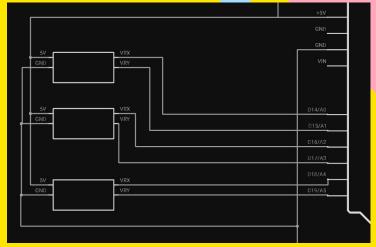


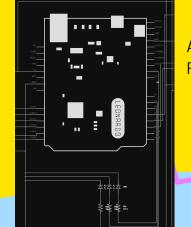
Top View

CIRCUIT DESIGN

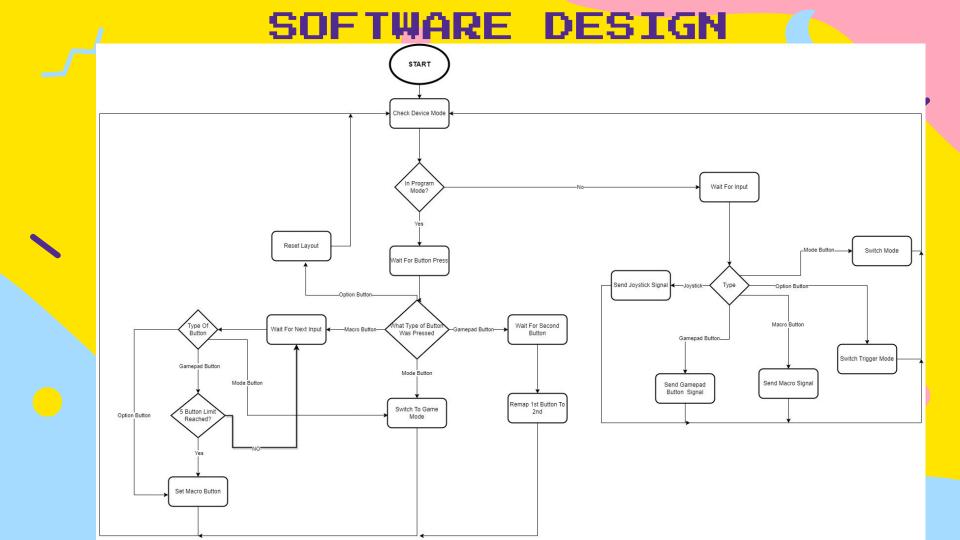



FULL CIRCUIT DESIGN




CIRCUIT DESIGN JOYSTICKS

Buttons


ARDUINO/ RGB LED

PISO SHIFT REGISTERS

9. SOFTWARE

What are the goals of the controller?

10. Bill of Materials

Detailed list of materials required

Other Materials

ID #	Name	Description	Unit	Quantity	Unit Cost	Extended Cost
4	Arcade Button Type 2	Arcade settings button	Unit	10	\$0.00	\$0.00
5	Joystick	analog joystick potentiometer	Unit	3	\$0.00	\$0.00
6	Single Coil Wires	electrical wire to connect components	Meters	10	\$0.00	\$0.00
					\$0.00	\$0.00
8	SN74HC166N	parallel-in/serial-out shift register to extend inputs	Unit	0		
					\$0.00	\$0.00
9	USB Male Micro B To Female A	inner USB wire. Arduino to box wall	Unit	1		
					\$0.00	\$0.00
10	USB Male A To Male A	outer USB wire. Controller to game device	Unit	1		
12	Solder	lead free solder	Unit	1	\$0.00	\$0.00
15	Wood Glue	glue to hold box together	Unit	1	\$0.00	\$0.00
					\$0.00	\$0.00
16	Arduino XInput Library/Firmware	To let Arduino be used as a controller	Unit	1		
					\$0.00	\$0.00
19	USB Convertor	to allow the controller to work on Xbox	Unit	1		

Purchased Materials

ID #	Name	Description	Unit	Quantity	Unit Cost	Extended Cost
1	Arduino Leonardo	Main logic board	Unit	1	\$15.00	\$15.00
2	LED	RGB light to display mode info	Unit	1	\$2.00	\$2.00
3	Arcade Button Type 1	Arcade game pad button	Unit	10	\$3.83	\$38.30
7	Joystick Cover	3d-printed cover for accessibility	g	30	\$0.15	\$4.50
11	PCB	PCB to connect electronics to	Unit	1	\$5.00	\$5.00
13	Header pins	Pins to connect to the PCB	Unit	3	\$0.30	\$0.90
14	MDF Wood	wood panels to be laser cut for box	m²	0.56	\$17.85	\$10.00
17	Resistors 10K	Resistors for buttons	Unit	20	\$0.01	\$0.20
18	Resistors 220	resistors for RGB LED	Unit	3	\$0.01	\$0.03
Total product cost (without taxes or shipping)					\$75.93	
Total product cost (including taxes and shipping)					\$93.80 Includes \$8 Shipping	

12. Critical Product Assumption

Important assumptions we make during the design process

Properties of <u>-</u> the device ⁻

External factors

• Input lag 🛛 Clock rate

We assume buttons will not have input lag

Clock rate is currently unknown and will be determined by testing

Length of Wire

We assume 3m of wire length is enough for the purposes of our client

Current Delivery

Strong enough to power the circuit and for shift registers to work

MakerLAB hours

Enough to successfully 3D print all our parts in time

Component availability

We assume we can obtain all needed parts from the MakerStore _____

Time Assessment Basis of the calculations

Average estimation = (optimistic estimation + pessimistic estimation)/2

Time assessment = (pessimistic estimation - average estimation)/2 + average estimation

Physical 2 days

Pessimistic estimation: 2 days Optimistic estimation: 1 day

Circuit Sh

Pessimistic estimation: 9h Optimistic estimation: 5h

Software 6h

Pessimistic estimation: 7h Optimistic estimation: 2h

13. Client Feedback

- He would like us to add rapid fires
- configure buttons before start play
- The main features we want to add is more buttons to do subsequent actions only by pressing it once.

14. PROJECT PLAN

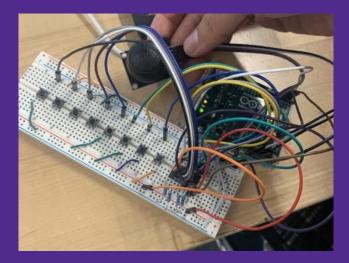
Overall

 Physical, circuit and software designs Time and skills needed to complete

 Critical assumptions Cost and procurement of materials

Next steps

• Prototyping and testing


- Prototype 1
- Prototype 2
- Prototype 3
- Progress presentation
- Final presentation and design day pitch

Testing metrics

- Input lag ⇒ <12ms
- Clock rate ⇒ fully working
- Power delivery ⇒ works for shift registers
- Shift register functionality ⇒ all pins work
- 3D Print time ⇒ enough time to print during a makerspace session (<6 hours)

Prototype choice

15. Planned Tests

Planned Tests

Input Lag

Xinput lag test

Buttons

Gamepad Tester

Gameplay

Super Mario Bros

16. Results and Analysis

		RESULTS			
		Expected Value	Actual Value		
	Input Lag Test	<12 milliseconds	9.3086 milliseconds		
	Gamepad Tester	All 13 Buttons Working	All 13 Buttons Working		
	SMB Play Test	No Perceived Lag	No Perceived Lag		
			7		

Analysis

Xbox 360 Controller (XInput) Polling Rate Checker

Outliers: 3 / 1000 Top 3 Outliers: 748.64 ms, 70.85 ms, 64.89 ms

Min 0.514300 ms - Max 748.640600 ms - Jitter 8.597398 ms Average 9.308595 ms - Polling Rate 107.427599 Hz

Write Report To File? J/[N]:

Bluetooth

9.11

ms.

USB With Converter

9.11 YS 9.3

XBOX Elite Controller ms VS Our Controller ms

19. Trials and Tribulations

What challenges did we encounter during our journey?

Learning new skills

3D printing and 3D modeling

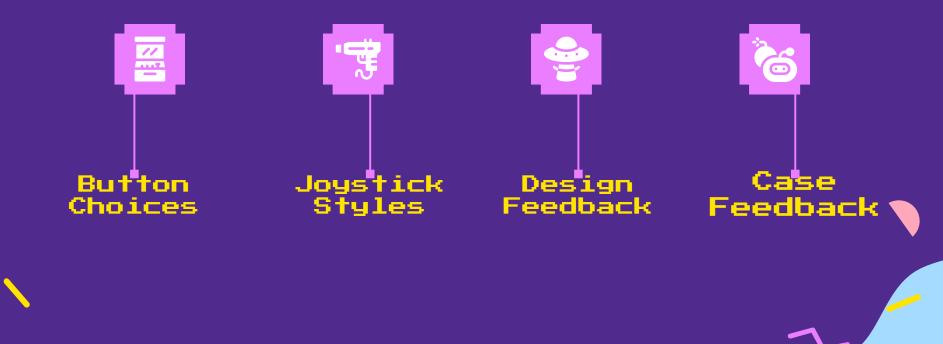
Lack of information

Very few similar projects in the market

Testing issues

Arduino port, soldering, etc

Libraries


Finding resources online for our purposes

20. Upcoming Client Feedback

Client Feedback

