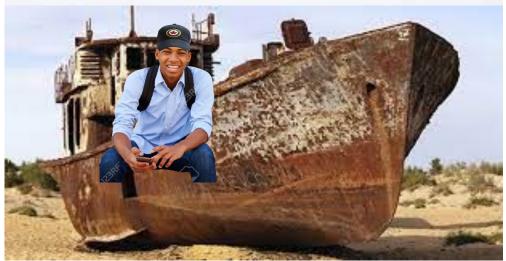
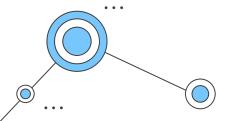

# Inverse **Kinematics** Robot

Sarah Alkadri, Isabelle Barrette, Jess Beardshaw, Rebeca Poulin, Benoit Tremblay


. . .



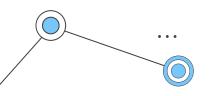

• •

. .

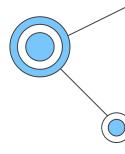
. .



. . .






## **Problem Statement**

John Faurbo, Theodore Eastmond and the Royal Canadian Navy need a robotic arm that has the ability to detect, remove and paint over corroded areas to ensure proper maintenance on the Halifax class warships. Cost, ease of use, proportions and safety of product are key to creating the best product for the client's needs.



# **Our Solution**





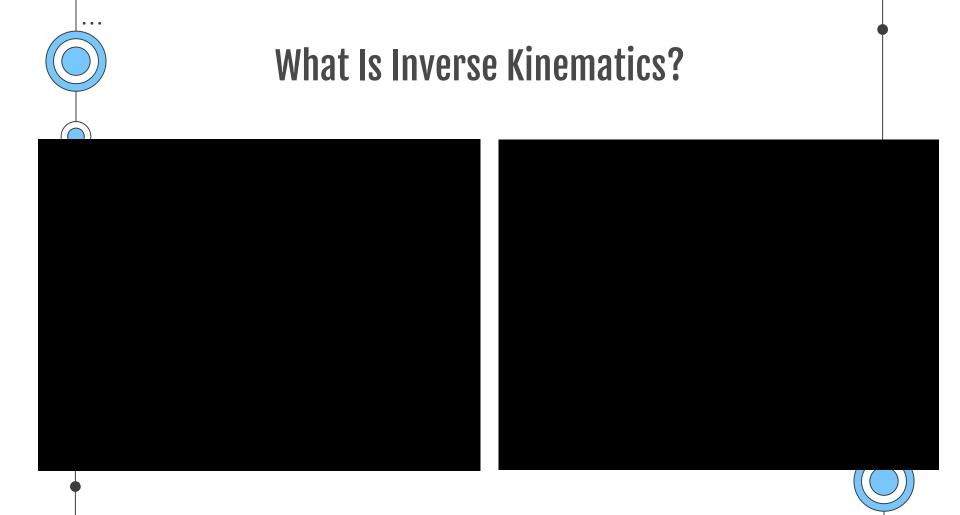
### Inverse Kinematics 3D0F, Open-Source,



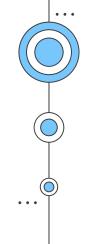
### **Corrosion Detection Software**

Coded in Python, Image filtering






**Safety** Emergency stop, PIR sensors

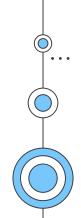


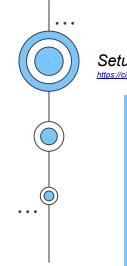

**End Effectors** 

Camera scanning, Marker concept



https://drive.google.com/file/d/11bNPYEDLJrzp\_Bf-3.1b8B7TaD\_Bcbi2b/view





# **End Effectors**

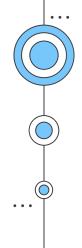




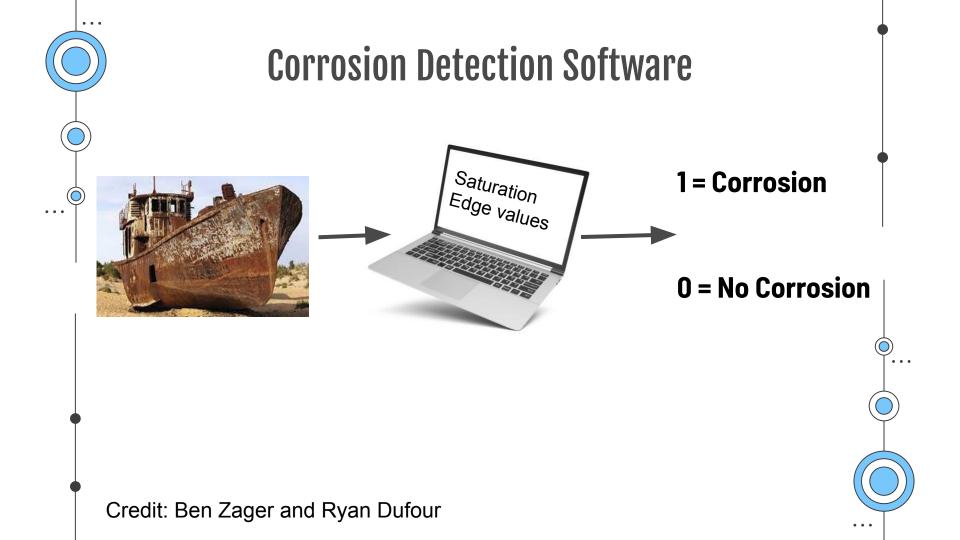


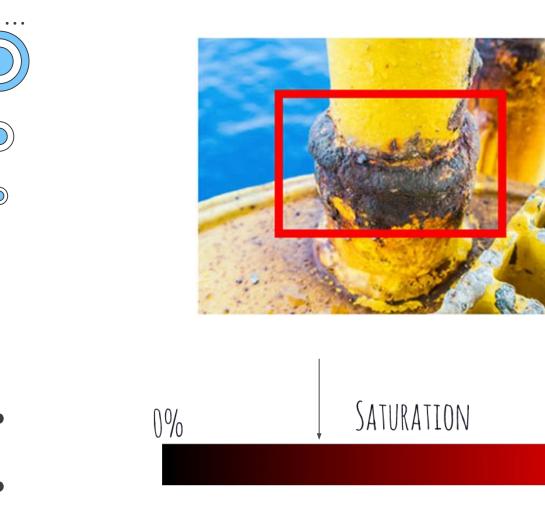




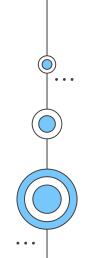

### Setup thanks to Indrek Luuk!




Taken with our OV7670 Camera!

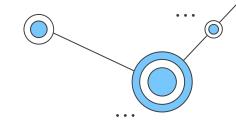



 $\bigcirc$ 

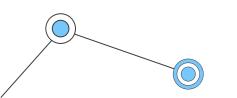


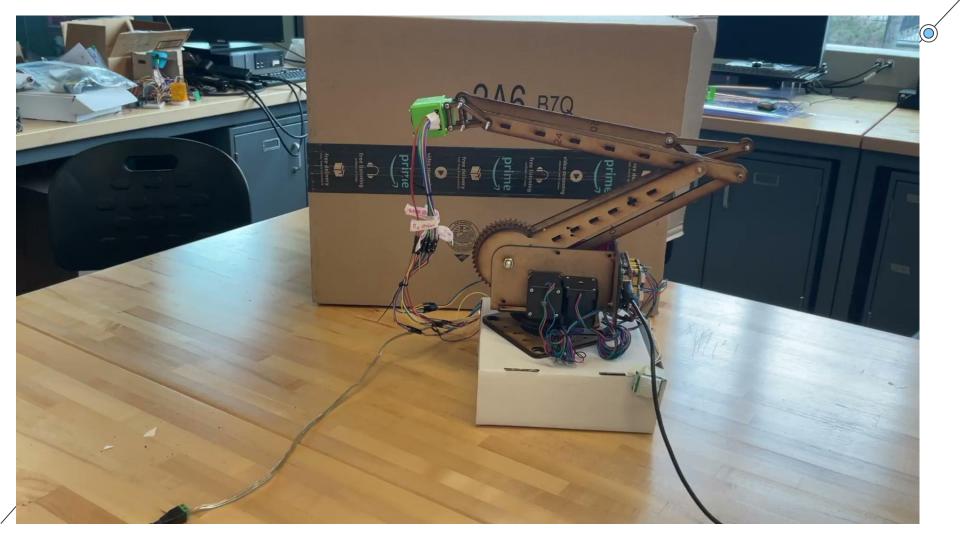

| 1  | 2  | 3  | Ч  | 5  | Ь    | 7  | 8  |
|----|----|----|----|----|------|----|----|
| 16 | 15 | 14 | 13 | 12 | NI I | 10 | q  |
| 17 | 18 | 19 | 20 | 15 | 22   | 23 | 24 |
| 32 | છા | 30 | 29 | 28 | 27   | 26 | 25 |
| 33 | 34 | 35 | 36 | 37 | 38   | 39 | 40 |
| 48 | 47 | 46 | 45 | 44 | 43   | 42 | 41 |
| 49 | 50 | SI | Sz | 53 | 54   | 55 | 56 |
| 6c | 63 | 62 | ы  | 60 | 59   | 58 | 57 |

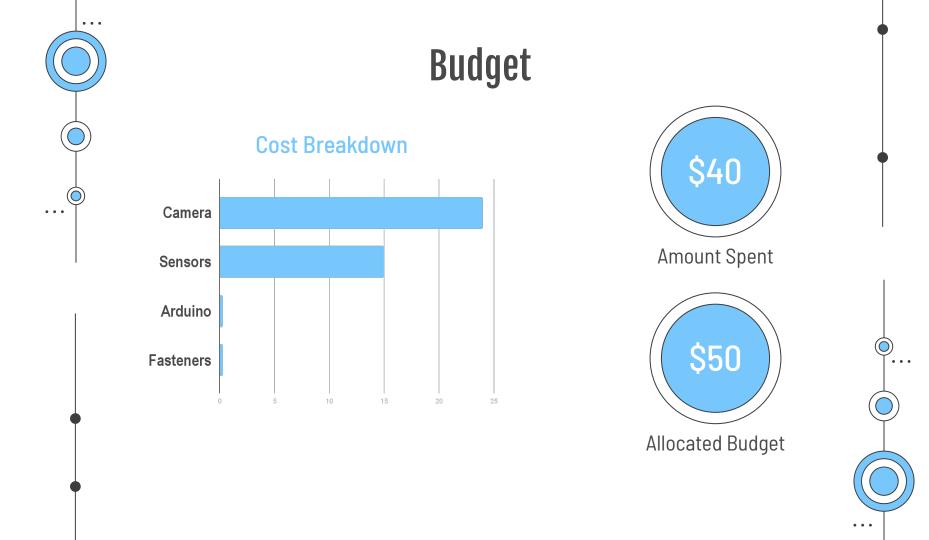


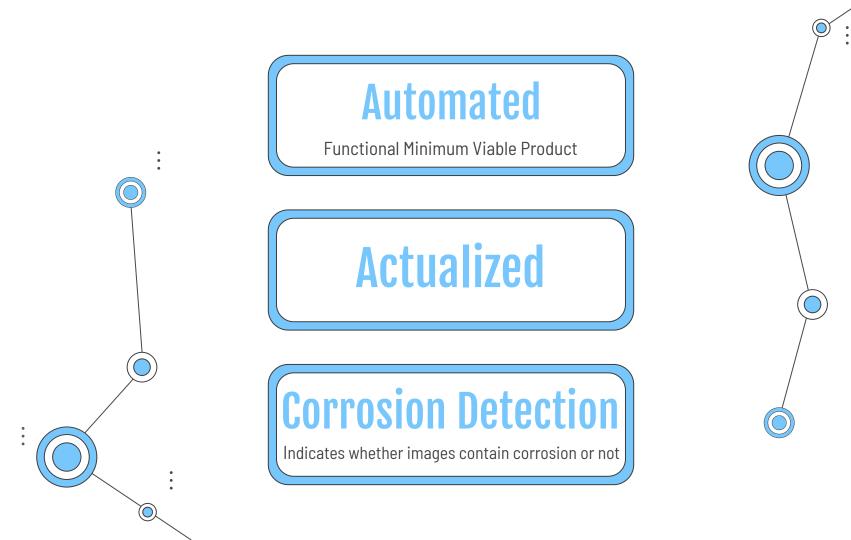



• • •





100%


# Sam's Video Demo















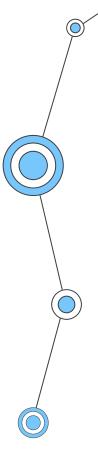



### C03

這 List 页 Board 🕒 Gantt Chart … 🛛 十

### √ All tasks ✓ By Predecessors 🛩 Expand all Collapse all ★ Ca =, Mar 2022 Apr 2022 Jan 2022 Feb 2022 May 2022 Jun 2022 2-8 3-9 26-1 9-15 16-22 23-29 30-5 6-12 13-19 20-26 27-5 6-12 13-19 20-26 27-2 10-16 17-23 24-30 1-7 8-14 15-21 22-28 29-4 Ê C03 -Deliverable A - Team Contract and Project Management Template - Due • Benoit T. +4 -Deliverable B - Needs Identification and Problem Statement - Due • Sarah A. +4 -Deliverable C - Design Criteria - Due • Rebeca P. +4 -Deliverable D - Conceptual Design - Due • Isabelle B. +4 Deliverable E - Project Plan and Cost Estimate - Due • Sarah A. +4 -Deliverable F - Prototype I and Customer Feedback - Due • Sarah A. +4 -Deliverable G - Prototype II and Customer Feedback - Due • Jess B. +4 Deliverable H - Prototype III and Customer Feedback - Due • Jess B. +4 -Deliverable I - Design Day Presentation Material - Due • Sarah A. +4 -Deliverable K - User and Product Manual - Due • Benoit T. +4 Design Day • Benoit T. +4 Deliverable J - Project Presentations • Sarah A. +4

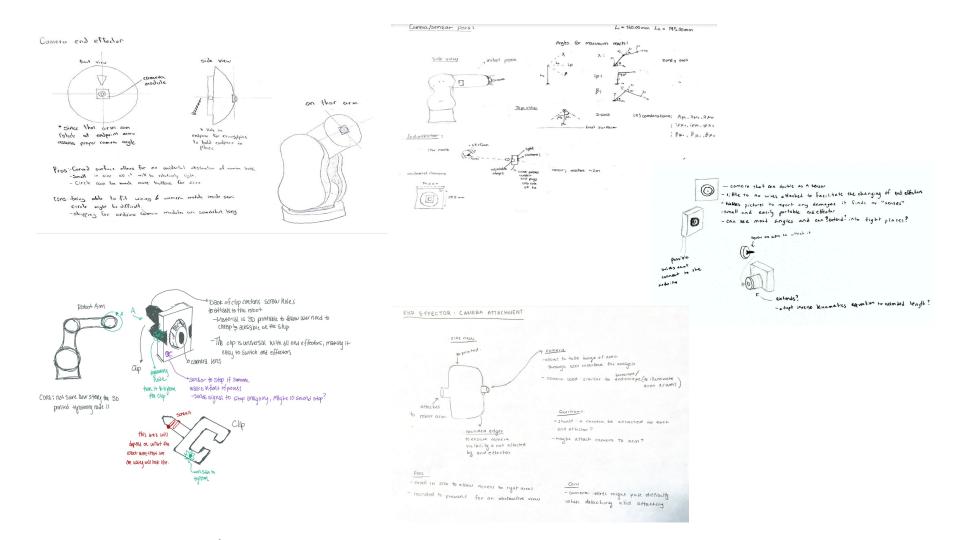
5-1


### Target Specifications

 $\bigcirc$ 

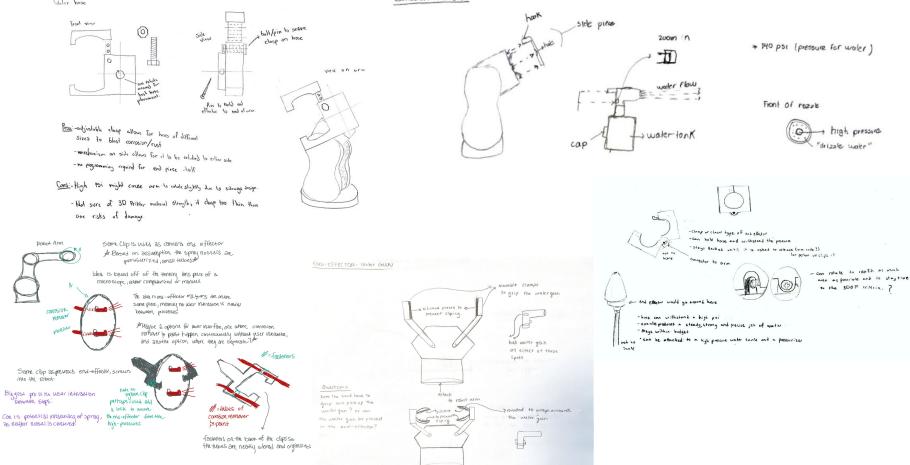
6

•


| Robot Mechanics                        |                                                |
|----------------------------------------|------------------------------------------------|
| Degrees of Freedom                     | 3                                              |
| Weight supported by end effector (kg)  | 1.00                                           |
| Weight of robot (kg)                   | 9.07                                           |
| Camera end-effector                    |                                                |
| Back and Main piece diameter (mm)      | 60.00                                          |
| Back depth (mm)                        | 2.90                                           |
| Main piece depth (mm)                  | 22.00                                          |
| Clips length                           | 10.00                                          |
| Weight (kg)                            | 0.035                                          |
| Camera                                 |                                                |
| Weight (kg)                            | 0.016                                          |
| Camera Resolution                      | VGA 640 x 480 at 30 fps                        |
| Working Power                          | 60mW/15fps                                     |
| Pixel coverage                         | 3.6um x 3.6um                                  |
| Painter/corrosion remover end-effector |                                                |
| Main piece dimensions (mm)             | (49.00 x 37.40 x 35) + 2(9.0 x 4.0 x 4.0)      |
| Adjustable piece dimensions (mm)       | (44.198 m x 22.0 x 34.5) + 2(32.5 x 4.8 x 4.8) |
| Weight (kg)                            | N/A                                            |

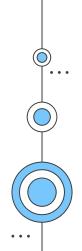


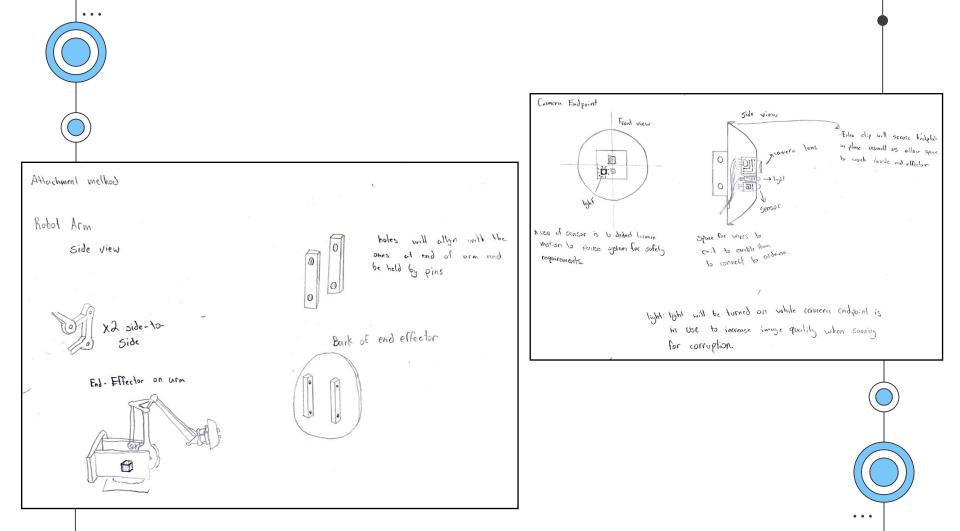
### List of Prioritized Criteria

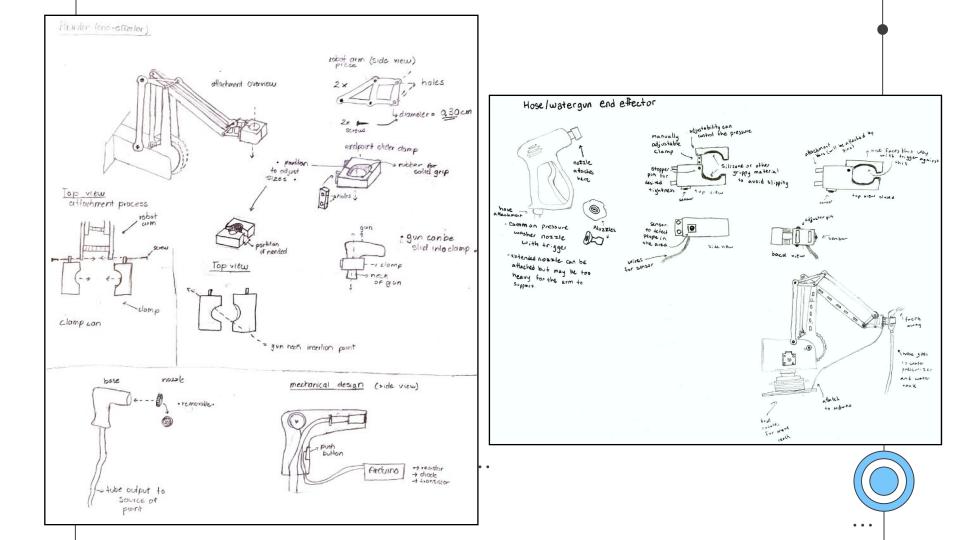

|    | Functional Requirements                                                                   | Relation | Value | Units   | Verification<br>Method            |
|----|-------------------------------------------------------------------------------------------|----------|-------|---------|-----------------------------------|
| 1  | The end effectors can hold and<br>operate camera, paint and<br>anti-corrosion sprayer.    | =        | Yes   | N/A     | Test                              |
| 2  | The arms supported weight.(i.e.the end effectors weight)                                  | >=       | 750   | g       | Final test,<br>weighing, analysis |
| 3  | The end effectors are easily interchangeable.                                             | =        | Yes   | N/A     | Test                              |
| 9  | The arm and end effectors remain<br>stable and withstand pressure from<br>hose and paint. | >=       | 180   | psi     | Test                              |
| 4  | The robot is easy to learn to operate.                                                    | <        | 45    | minutes | Test                              |
| 5  | The end effector and parts are 3D printable                                               | =        | Yes   | N/A     | Analysis                          |
| 6  | The arm is powered by 120-volt outlets                                                    | =        | Yes   | N/A     | Test, final check                 |
| 8  | The arm and end effector can be assembled quickly.                                        | <        | 25    | minutes | Test                              |
| 10 | The code uses a common<br>programming language such as C<br>or C++ or Python.             | =        | Yes   | N/A     | Test                              |
| 11 | The code uses inverse kinematics.                                                         | =        | Yes   | N/A     | Test                              |
| 12 | The design of end effectors and code are open source.                                     | =        | Yes   | N/A     | Test                              |
| 13 | The arm is controlled using an Arduino Uno.                                               | =        | Yes   | N/A     | Test                              |

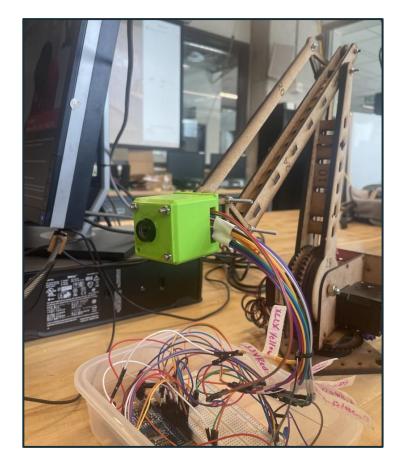
|   | Constraints                                                                                       | Relation | Value | Units          | Verification<br>Method    |
|---|---------------------------------------------------------------------------------------------------|----------|-------|----------------|---------------------------|
| 1 | The weight of the end effectors.                                                                  | <=       | 750   | g              | Analysis                  |
| 2 | The dimensions of the end effectors.                                                              | <        | 60    | mm             | Analysis                  |
| 3 | The cost of the project.                                                                          | <        | 50    | \$             | Estimate, final<br>check  |
| 4 | The weight of the arm.                                                                            | =        | 20    | lbs            | Analysis                  |
| 5 | The dimensions of the arm.                                                                        | <        | 1     | m <sup>2</sup> | Analysis                  |
| 6 | The lighting of the arms surroundings.                                                            | >        | Yes   | N/A            | Analysis                  |
| 7 | The area of sight/vision/range to spray and observe with camera.                                  | =        | 1     | m <sup>2</sup> | Analysis                  |
|   | Non-Functional Requirements                                                                       | Relation | Value | Units          | Verification<br>Method    |
| 1 | The robot is safe to operate and be<br>around while working.                                      | =        | Yes   | N/A            | Test                      |
| 2 | The robot is operated by someone<br>with limited technical experience.<br>(High School Education) | =        | Yes   | N/A            | Ask non-expert            |
| 3 | The parts, robot and code are easily repairable.                                                  | =        | Yes   | N/A            | Can be 3D printed         |
| 4 | The robot is compact and transportable.                                                           | =        | Yes   | N/A            | Analysis of<br>dimensions |
| 5 | The robot's lifespan before minor repairs needed.                                                 | >=       | 2-3   | months         | Estimate, analysis        |
| 6 | The robot's lifespan before major repairs needed.                                                 | >=       | 6     | months         | Estimate, analysis        |
| 7 | The robot is aesthetically pleasing.                                                              | =        | Yes   | N/A            | Client Meeting            |

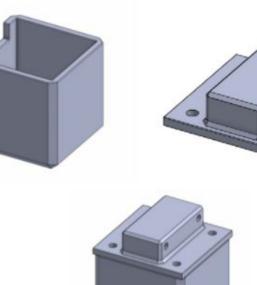


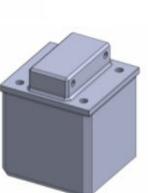


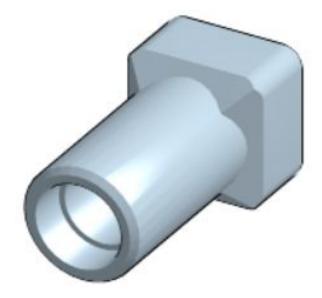














.



| Item Name and Link                              | Quantity   | Cost (\$)                      | Justification                                                                                                                                                                                        |
|-------------------------------------------------|------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Camera<br>OV7670 VGA CMOS<br>Camera             | 1          | 23.68                          | The camera chosen needs to be compatible with<br>Arduino software in order to access the data (live<br>video feed) and send it to other devices.                                                     |
| PIR motion sensors<br><u>PIR motion sensors</u> | 1          | 14.99                          | These sensors will be added to different<br>end-effectors to ensure safety while operation.<br>(soldered)                                                                                            |
| 3D printing materials                           |            | 0.00                           | Since most of our end effector components will be<br>3D printed, we will be using the machines and<br>materials provided in the Maker Lab.                                                           |
| Arduino kit and wires                           | 1          | 0.00 (Free<br>at Maker<br>Lab) | The Arduino will be useful for the spray guns in<br>order to connect the sensors and triggers to a<br>specific output in our software. This kit includes a<br>breadboard and some resistors in order |
| Bolts and Nuts                                  | 14         | 0.00(Free<br>at<br>MakerLab)   | Used to attach end effector parts together and attach the end effectors to the robot arm.                                                                                                            |
| Sharpie                                         | 1          | 0.00                           | The Sharpie is used for the paint/corrosion remover<br>end effector to demonstrate its functionality to the<br>client on design day.                                                                 |
| Total product cost (w/o ta<br>shipping)         | axes or    | 38.67                          |                                                                                                                                                                                                      |
| Total product cost (inclue<br>and shipping)     | ding taxes | 41.16                          |                                                                                                                                                                                                      |

| Item Name                                | Description                                                                                 | Туре                     | Prototype # | Source                                 |
|------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|-------------|----------------------------------------|
| CAD software<br>(Onshape)                | This will be used<br>to create a<br>computer-aided<br>design of different<br>end effectors. | Analytical<br>(Software) | 1           | <u>https://www.onsha</u><br>pe.com/en/ |
| Arduino Studio<br>(Tinkercad)            | To test circuits.                                                                           | Temporary<br>software    | 2           | https://www.tinker<br>cad.com          |
| 3D printer                               | To 3D print all<br>end effectors and<br>attachment pieces.                                  | Equipment.               | 3           | MarkerSpace                            |
| Coding<br>Software(CLion,<br>CodeBlocks) | To implement code.                                                                          | Software                 | 4           | Personal device                        |

• • •

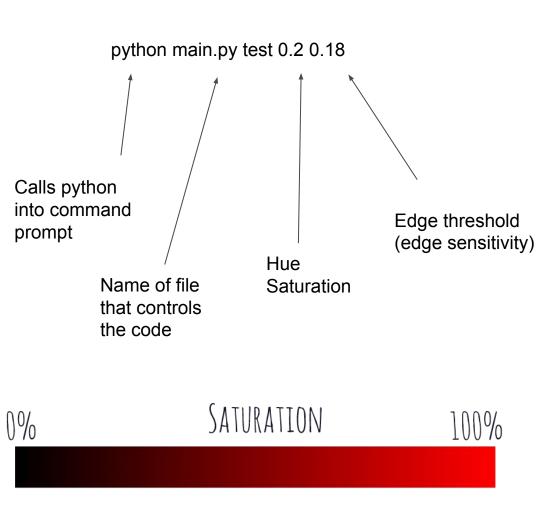
. . .

. . .

| Test # | Objective                                      | Description and Test Method                                                                                                                                                                                                                                | Expected<br>Result/Stopping<br>Criteria                                                                                              | Test<br>Duration<br>and Date                                   |
|--------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1      | Mathematical<br>code concept                   | To have a logical and functional<br>mathematical approach of the<br>functionality and movement of the arm.                                                                                                                                                 | Applicable to our<br>code concept<br>further on.                                                                                     | 1 or 2 days<br>Reading<br>week                                 |
| 2      | Analysis of<br>materials                       | Lots of materials are used in this design,<br>such as different 3D printable materials,<br>cameras, sensors and Arduino components<br>such as the wires and diodes. These will<br>have to be tested for their effectiveness<br>and researched extensively, | Be approved by the<br>TA/PM and<br>purchase materials<br>ASAP.                                                                       | 2 or 3 days<br>Reading<br>week                                 |
| 3      | Engineering<br>drawing of<br>end-effectors     | Detailed engineering drawing on paper of<br>our design and the orthographic<br>projections to show all sides and<br>important components                                                                                                                   | Functional drawing<br>with all technical<br>components<br>provided.                                                                  | 2 days<br>Reading<br>week                                      |
| 4      | Basic code<br>for arm<br>movement              | Once the mathematical concept is<br>achieved and the inverse kinematics<br>equation is understood, the equations can<br>be translated to code for future testing                                                                                           | Test on the robot<br>model with school<br>Arduino, capable of<br>performing defined<br>tasks                                         | 2 or 3 days<br>While the<br>drawings<br>are being<br>made      |
| 5      | 3D modelling<br>on Onshape<br>or<br>Solidworks | 3D drawing or model on a 3D modelling<br>site to determine our "final" design with<br>more precision and to better our<br>understanding of our design and ensure<br>our understanding of it.                                                               | Is complete and<br>able to be 3D<br>printed successfully                                                                             | 2 days<br>As soon as<br>engineering<br>drawing is<br>done      |
| 6      | Camera and<br>corrosion<br>detection<br>code   | If all goes well, the corrosion code we<br>have found may be accessible to us and<br>may be able to be translated, and that<br>translation to a language that we<br>understand would be this step.                                                         | Granted permission<br>of the detection<br>code, successfully<br>translated from<br>Python to C.<br>Functional with<br>robot testing. | 4 days<br>While<br>drawings<br>and models<br>are being<br>made |

| -<br>7 | Create user<br>interface and<br>test with<br>what we have                   | Attempt different user inputs and see how<br>these are processed and outputted<br>compared to the expected outcome.                                                                                                                                                             | The code<br>successfully directs<br>the user to each<br>desired input<br>screen                 | 1 day<br>Before the<br>first session<br>with robot      |
|--------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 8      | Test materials<br>with what we<br>currently<br>have                         | Materials have been analyzed, and the<br>best ones are chosen and must be put to<br>the test to see if they are good for our<br>product. They will be tested in durability<br>and compatibility with the arm and the<br>code.                                                   | Test Arduino parts<br>with arm and code.<br>The camera can fit<br>in our end effector<br>piece. | 2 days<br>First<br>session<br>with robot<br>arm         |
| 9      | Test arm<br>movement<br>code on arm                                         | movement kinematics movement of the arm should                                                                                                                                                                                                                                  |                                                                                                 | 1 day<br>First<br>session<br>with robot<br>arm          |
| 10     | Paper or<br>cardboard<br>quick<br>prototype                                 | Quickly make a 2D and/or 3D tangible<br>model of end-effectors as a size<br>comparison to the actual robot and objects<br>that will be used with them to be sure of<br>our dimensions                                                                                           | Production is<br>successful                                                                     | > 1 day<br>First<br>session<br>with robot<br>arm        |
| 11     | Retouch<br>engineering<br>drawing and<br>3D modeling<br>of<br>end-effectors | Any miscalculations or wrong dimensions<br>are discovered through the previous tests<br>and now the drawings and models can be<br>readjusted to accommodate our new<br>discoveries                                                                                              | Successfully<br>implement changes<br>for second<br>improved prototype<br>designs.               | l day<br>After first<br>session<br>with robot           |
| 12     | Second Paper<br>or cardboard<br>prototype                                   | Another comparison with a quick and easy<br>prototype and the arm with the new<br>calculations and retouched dimensions to<br>see if it is correct, if not repeat steps 5 and<br>6 until the prototype works                                                                    | Successfully<br>implement changes<br>for second<br>improved prototype<br>designs.               | 1 to 5 days<br>For next<br>session<br>with robot<br>arm |
| 13     | 3D printed<br>model of<br>what we have<br>designed so<br>far                | The 3D model is adjusted and can now<br>have the pieces printed and assembled for<br>testing on the robot. If the previous<br>analysis and prototyping were effective,<br>this should be done once or twice to<br>minimize the number of materials used<br>and the overall cost | Successful printing<br>process according<br>to the<br>measurements of<br>the designs.           | 1 or 2 days<br>Second<br>session<br>with robot<br>arm   |

| 14 | Test code and<br>user interface<br>with newly<br>3D printed<br>pieces and<br>arm                                            | Pieces are printed and the end-effectors<br>are assembled, everything can be wired<br>and plugged into the Arduino in its<br>respective place, and the code can be<br>tested on the arm and the user interface. If<br>any errors occur, the code and user<br>interface will have to be modified<br>accordingly                                                                                     | Consistent with<br>prototype testing.<br>Five consecutive<br>test trials with no<br>errors. | 1 or 2 days<br>Once robot<br>and 3D<br>printer is<br>accessible                        |
|----|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 15 | Make sure<br>attachments<br>and necessary<br>scenarios are<br>compatible<br>with<br>end-effectors<br>and code               | The final test will entail putting all pieces<br>together for one last test, running multiple<br>scenarios with the user interface, arm and<br>all the end effectors to simulate the users'<br>experience and ensure that it is possible,<br>simple and easy to understand for the high<br>school students who will most likely be<br>running the interface and interchanging<br>the end effectors | Consistent<br>prototype testing.<br>Five consecutive<br>test trials with no<br>errors.      | 3 days<br>Second last<br>step, leave<br>time to fix<br>mistakes<br>and get<br>feedback |
| 16 | Adjust all<br>necessary<br>things and<br>create the<br>final versions<br>of<br>end-effectors,<br>code and user<br>interface | Once the group and client have settled on<br>a final version and has been through the<br>tests previously mentioned, it is time to<br>bring it to life and create the final version<br>of everything necessary, test it on the<br>robot arm and if all goes well, there will<br>no longer be any need for prototyping                                                                              | Either run out of<br>time or be satisfied<br>with the final<br>product before<br>design day | 1 to 3 days<br>Last step,<br>must be<br>before<br>design day                           |


 $\bigcirc$ 

Ć

•

| C:\Python\Corr |           | on2\corrosion-c | detection-mas | ter\src>python | main |
|----------------|-----------|-----------------|---------------|----------------|------|
| Initializing c | lassifier |                 |               |                |      |
| rust.10.jpg    |           |                 |               |                |      |
| rust.10.xml    |           |                 |               |                |      |
| rust.11.jpg    |           |                 |               |                |      |
| rust.11.xml    |           |                 |               |                |      |
| rust.13.jpg    |           |                 |               |                |      |
| rust.13.xml    |           |                 |               |                |      |
| rust.15.jpg    |           |                 |               |                |      |
| rust.15.xml    |           |                 |               |                |      |
| rust.16.jpg    |           |                 |               |                |      |
| rust.16.xml    |           |                 |               |                |      |
| rust.17.jpg    |           |                 |               |                |      |
| rust.17.xml    |           |                 |               |                |      |
| rust.18.jpg    |           |                 |               |                |      |
| rust.18.xml    |           |                 |               |                |      |
| rust.19.jpg    |           |                 |               |                |      |
| rust.19.xml    |           |                 |               |                |      |
| rust.2.jpg     |           |                 |               |                |      |
| rust.2.xml     |           |                 |               |                |      |
| rust.20.jpg    |           |                 |               |                |      |
| rust.20.xml    |           |                 |               |                |      |
| rust.23.jpg    |           |                 |               |                |      |
| rust.23.xml    |           |                 |               |                |      |
| rust.24.jpg    |           |                 |               |                |      |
| rust.24.xml    |           |                 |               |                |      |
| rust.25.jpg    |           |                 |               |                |      |
| rust.25.xml    |           |                 |               |                |      |
| rust.28.jpg    |           |                 |               |                |      |
| rust.28.xml    |           |                 |               |                |      |
| rust.29.jpg    |           |                 |               |                |      |
| rust.29.xml    |           |                 |               |                |      |
| rust.30.jpg    |           |                 |               |                |      |
| rust.30.xml    |           |                 |               |                |      |
| rust.31.jpg    |           |                 |               |                |      |
| rust.31.xml    |           |                 |               |                |      |
| rust.32.jpg    |           |                 |               |                |      |
| rust.32.xml    |           |                 |               |                |      |
| rust.35.jpg    |           |                 |               |                |      |
| rust.35.xml    |           |                 |               |                |      |
| rust.36.jpg    |           |                 |               |                |      |
| rust.36.xml    |           |                 |               |                |      |
| rust.4.jpg     |           |                 |               |                |      |
| rust.4.xml     |           |                 |               |                |      |
| rust.45.jpg    |           |                 |               |                |      |
| rust.45.xml    |           |                 |               |                |      |
| rust.46.jpg    |           |                 |               |                |      |
| rust.46.xml    |           |                 |               |                |      |
| rust.48.jpg    |           |                 |               |                |      |
| 1 0311401 316  |           |                 |               |                |      |

.py test



### Implemented Coordinate System

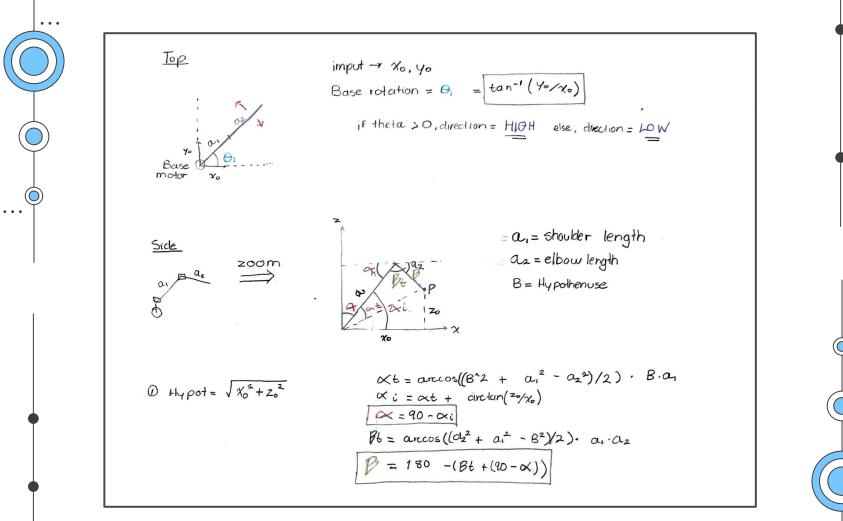
C:\Users\jessb\Documents\Python\Rust>rust detectiion.py 82 1.28125 2022-03-17\_11.11.18.090.png = 1 2022-03-17 11.11.19.797.png = 2 2022-03-17 11.11.21.497.png = 3 2022-03-17\_11.11.23.196.png = 4 2022-03-17 11.11.24.881.png = 5 2022-03-17\_11.11.28.293.png = 6 2022-03-17 11.11.29.995.png = 7 2022-03-17 11.11.31.693.png = 8 2022-03-17\_11.11.33.391.png = 9 2022-03-17\_11.11.36.788.png = 10 2022-03-17\_11.11.38.487.png = 11 2022-03-17 11.11.40.187.png = 12 2022-03-17 11.11.41.886.png = 13 2022-03-17 11.11.43.585.png = 14 2022-03-17 11.11.45.284.png = 15 2022-03-17 11.11.46.982.png = 16 2022-03-17 11.11.48.676.png = 17 2022-03-17 11.11.50.382.png = 18 2022-03-17\_11.11.52.074.png = 19 2022-03-17 11.11.53.779.png = 20 2022-03-17\_11.11.55.478.png = 21 2022-03-17 11.11.57.177.png = 22 2022-03-17 11.11.58.876.png = 23 2022-03-17\_11.12.00.577.png = 24 2022-03-17 11.12.02.275.png = 25 2022-03-17 11.12.03.976.png = 26 2022-03-17 11.12.05.673.png = 27 2022-03-17\_11.12.07.372.png = 28 2022-03-17\_11.12.09.071.png = 29 2022-03-17 11.12.10.771.png = 30 2022-03-17\_11.12.14.168.png = 31 2022-03-17 11.12.15.877.png = 32 2022-03-17\_11.12.17.566.png = 33 2022-03-17 11.12.19.265.png = 34 2022-03-17 11.12.20.970.png = 35 2022-03-17 11.12.22.669.png = 36 2022-03-17 11.12.24.363.png = 37 2022-03-17 11.12.26.061.png = 38 2022-03-17 11.12.27.765.png = 39 2022-03-17 11.12.29.458.png = 40 2022-03-17\_11.12.31.165.png = 41 2022-03-17 11.12.32.865.png = 42 2022-03-17\_11.12.34.569.png = 43 2022-03-17 11.12.36.255.png = 44 2022-03-17 11.12.37.954.png = 45

FILE EDIT FORMAT KUN UPTIONS WINDOW HEIP import os from os.path import isfile, join import os.path path = r"C:\Users\jessb\Documents\Python\corrosion\corrosion-detection-master\data\test" picturenumber = len(os.listdir(path)) print (picturenumber) x = picturenumber/64print(float(x)) gridnumber = 1v = 1for dirpath, dirnames, filenames in os.walk(path): while gridnumber <= 64: for filename in [f for f in filenames][:64]: while y <= 2: print ("%s = %d" %(filename, gridnumber)) y +=1 gridnumber +=1 y = 1quit()

. . .

. . .

### Improved Coordinate Concept


| results_test - Notepad      |      |
|-----------------------------|------|
| File Edit Format View Help  |      |
| 2022-03-28_21.54.03.155.png | = 33 |
| 2022-03-28_21.54.49.600.png | = 30 |
| 2022-03-28 21.54.51.300.png | = 14 |
| 2022-03-28_21.54.52.998.png | = 11 |
| 2022-03-28_21.54.54.698.png | = 23 |
| 2022-03-28 21.54.56.397.png | = 56 |
| 2022-03-28_21.54.58.096.png | = 55 |
| 2022-03-28_21.54.59.795.png | = 41 |
| 2022-03-28_21.55.01.494.png | = 45 |
| 2022-03-28_21.55.03.193.png | = 39 |

- Values assigned to each picture
- Value is also assigned to a motor

position

- IK goes back to position with code

for rust remover step



. . .

• • •



•

Language = C++

#include <Stepper.h>

```
int i;
const int StepX = 2; //elbow joint
const int DirX = 5;
const int StepY = 3;//shoulder joint
const int DirY = 6;
const int StepZ = 4; //base joint
const int DirZ = 7;
```

```
//HIGH for clockwise and LOW for anticlockwise
if(Beta<0) direction = LOW;
else direction = HIGH;
digitalWrite(DirX,direction);
Serial.println("X driection is :");
Serial.print("direction");
```

if(Alpha<0) direction = LOW; else direction = HIGH; digitalWrite(DirY,direction); Serial.println("Y driection is :"); Serial.print("direction");

if(Theta>0) direction = LOW; else direction = HIGH; digitalWrite(DirZ,direction); Serial.println("Z driection is :"); Serial.print("direction");

//other functions
serial();
movement();

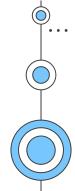
```
void calculation() {
```

```
Hypot = sqrt(sq(x0) + sq(z0));
A = ElbowLength;
B = Hypot;
C = ShoulderLength;
```

Theta = atan(y0/x0)\* (180 / PI);

```
Alpha_temp = acos((sq(B) + sq(C) - sq(A)) / (2 * B * C)) * (180 / PI);
Alpha_i = 90 - Alpha_temp + atan(z0/x0)*(180 / PI);
Alpha = 90 - Alpha_i;
```

```
Beta_temp = acos((sq(C) + sq(A) - sq(B)) / (2 * A * C)) * (180 / PI);
Beta = 180 -(Alpha_i + Beta_temp);
```


}//end calc

```
void movement(){
```

```
//Move until target steps
for(int x = 0; x<Theta/var ; x++){
digitalWrite(StepZ,HIGH);
delay(100);
digitalWrite(StepZ,LOW);
}</pre>
```

```
for(int x = 0; x<Alpha/var ; x++){
digitalWrite(StepY,HIGH);
delay(100);
digitalWrite(StepY,LOW);
}</pre>
```

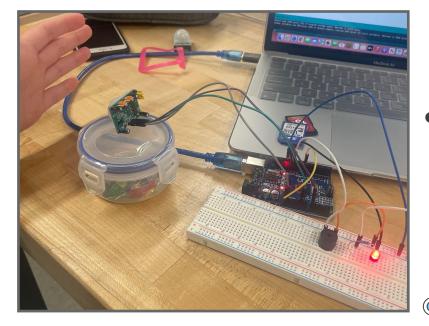
```
for(int x = 0; x<Beta/var ; x++){
  digitalWrite(StepX,HIGH);
  delay(100);
  digitalWrite(StepX,LOW);
}</pre>
```



# No analog pins left on arduino... Needed other solution!

### Sensor Code

. . .


. . .

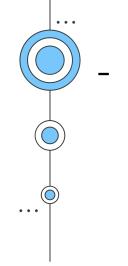
```
int buzzer = 9;
int ledPin = 11;
int inputPin = 10;
int pirState = LOW;
int val = 0;
void setup() {
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
                               // declare LED as output
 pinMode(inputPin, INPUT);
 pinMode(buzzer, OUTPUT);
 void loop(){
 val = digitalRead(inputPin); // read input value
 if (val == HIGH) {
                            // check if the input is HIGH
   digitalWrite(ledPin, HIGH); // turn LED ON
   if (pirState == LOW) {
     // we have just turned on
digitalWrite(buzzer, HIGH);
    delav(100):
     Serial.println("Motion detected!");
     // We only want to print on the output change, not state
     pirState = HIGH;
 } else {
   digitalWrite(ledPin, LOW); // turn LED OFF
   if (pirState == HIGH) {
     // we have just turned of
     digitalWrite(buzzer,LOW);
     delay(100);
     Serial.println("Motion ended!");
     // We only want to print on the output change, not state
```

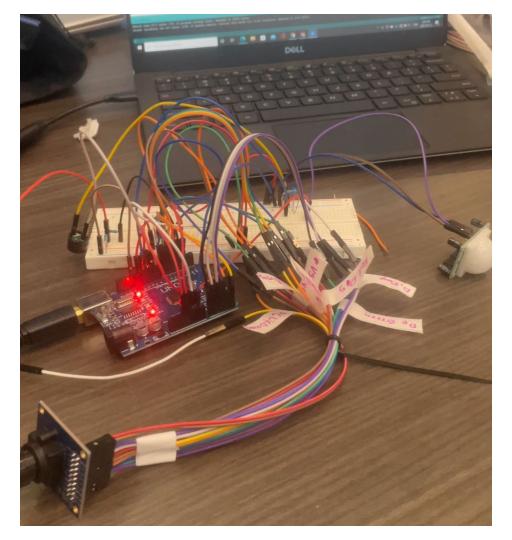
```
// choose the pin for the LED
// choose the input pin (for PIR sensor)
// we start, assuming no motion detected
// variable for reading the pin status
```

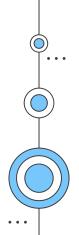
```
// declare sensor as input
```

```
pirState = LOW;
```




. . .


. . .


# - **OV7670** <u>- 0.3 Megapixels</u>

- VGA sends picture output to USB
- No external Ram or Fifo required
- *No Arduino shield* required!
- Very weak! 1Mhz capabilities with USB vs

Arduino clock speed of 16Mhz





